Dissertation Overview

Thermal Analysis and Phase Equilibria in the Mg-B System

By S. D. Bohnenstiehl

Presented in partial fulfillment of the requirements for the Doctor of Philosophy degree in Materials Science & Engineering at The Ohio State University

> Committee: Dr. Michael Sumption (co-advisor) Dr. Suliman Dregia (co-advisor) Dr. John Morral

Acknowledgements: This work was supported by the U. S. Dept. of Energy, Office of High Energy Physics under Grant No. DE-FG02-95ER40900.

Outline

- Introduction
- Thermal Analysis of the Mg/B Reaction
- Smith Thermal Analysis Method in the Mg/B System
- Synthesis of Mg-B-C Alloys

Introduction

- MgB₂ known since ~19th century
- Originally used by chemists to make boron hydrides by dissolving the compound in acid
- Mislabeled as Mg₃B₂ until 1954 when correct stoichiometry was determined by Jones and Marsh to be MgB₂ and structure was determined to be isomorphous with AIB₂ (P6/mmm)
- Discovered to be superconducting with $\rm T_{c}$ of 39 K by Nagamatsu et al. in 2001
- Continuous development as applied material for superconducting applications since 2001

Thermal Analysis of the Mg/B Reaction

Low Temperature MgB₂ Synthesis

- Low temperatures required due to Mg volatility (Mg boils at 1090 °C)
- This requires a fine boron powder since the boron never melts (pure boron melts at 2092 °C)
- Presumably, the reaction proceeds by formation of MgB₇ first, MgB₄ second, and finally MgB₂ (see phase diagram next slide)
- Numerous authors reported two exothermic events in the reaction of Mg powder and amorphous Boron powder by DTA and DSC (see below)

- 1. Meng et al., *Materieals Research Society Symposia Proceedings* **689** (2002) 39-46.
- 2. Goldacker et al., *Supercond. Sci. Technol.* **17** (2004) S490.
- 3. Kim et al., *Journal of Applied Physics* **100** (2006) 013908.

Mg-B Phase Diagram – 1 atm

© ASM International 2006. Diagram No. 900297

TA Instruments Differential Scanning Calorimeter 2920

Instrument Response – Pure Mg

Mg powder and Mg + B powder

Mg powder and Mg + B powder

Mg Powder – multiple runs

Mg from MgH₂

XRD on MgH₂ exposed to air

XRD on MgH₂ after decomposition

Proposed Mechanism for Mg DSC Behavior

- Mg(OH)₂ forms on Mg and MgH₂ exposed to air
- At ~425-475 ° C Mg(OH)₂ decomposes
- This leads to Mg(OH)₂ + Mg → 2MgO + H₂ which starts a low temperature reaction in the Mg/B powder mixture
- A source of clean Mg with no hydroxide may provide a means to study the Mg/B powder reaction without the initial low temperature event (i.e. clean MgH₂)

MgH_2 + amorphous B

Kinetic Analysis

Assuming an elementary reaction and known initial and final states then we can use the general rate equation:

$$\frac{d\alpha}{dt} = k(T) \cdot (1 - \alpha) \quad \text{where} \quad k(T) = A \cdot e^{-E_A / kT}$$

which becomes

$$\beta \frac{d\alpha}{dT} = A \cdot e^{-E_A/kT} \cdot (1 - \alpha) \text{ where } \beta = \frac{dT}{dt}$$

MgB₂ Activation Energy

$MgH_2 + B$ with air exposure

Conclusions

- "Intrinsic" reaction of Mg + amorphous B starts at ~575 ° C with activation energy of ~241 kJ/mole
- The reaction starts below the Mg melting point of 650 °C.
- The first reaction observed in standard Mg/B powder mixtures is likely initiated by Mg(OH)₂ decomposition
- The thermal events in the Mg/B powder mixture are kinetic events and thus this study is only relevant for this particular boron powder (99% pure amorphous boron)

Results Published in: S. Bohnenstiehl, S. A. Dregia, M. D. Sumption and E. W. Collings, "Thermal Analysis of MgB₂ Formation", *IEEE Transactions on Applied Superconductivity* **17** (2007) 2754.

Smith Thermal Analysis Method in the Mg/B System

Problems in Low Temperature Synthesis

- •Mg is volatile
- •MgO contamination almost always present
- •Homogenous doping is very difficult
- •Porosity always exists

Fracture SEM on MgB₂ filament in commercial wire

Voids where Mg powder used to be

High Pressure and High Temperatures

What about using pressure to increase the boiling point of Mg?

Clausius-Clapeyron Equation: $dP/dT = L/(T\Delta V)$

1 bar	1090 °C
10 bar	~1475 °C
100 bar	~2200 °C

High Temperature High Pressure Vessel

Eurotherm 3504 Temperature _____ Controller

99.998% Argon '

Type C thermocouples (W-Re)

Monel Pressure Vessel (1500 psi maximum pressure)

Lepel 5 kW Induction Power Supply

> Conax High Pressure Feedthroughs

Burst Disc and Pressure Relief Valve

Induction Coil and Hot Zone

Hot Zone Design

Standard Temperature Control

The sample thermocouple is passive and not part of the temperature control loop.

Smith Thermal Analysis Method

The sample and graphite thermocouples are part of the temperature control loop and a temperature difference is maintained.

Smith Thermal Analysis Protocol

- Under manual control, heat the sample to some temperature near the region of interest.
- Determine the temperature difference between the graphite thermocouple and sample thermocouple
- Switch to automatic control and input a temperature difference set point that is either higher or lower than the equilibrium value determined above to either heat or cool the system.

Smith Thermal Analysis on Aluminum

Advantages over DTA and DSC

- Sample is closer to equilibrium during first order phase transitions
- Small thermal events can be observed by increasing the sample size
- Large samples (10-100 grams) make it easy to use other characterization methods afterwards such as XRD
- Specific heat and latent heats can be obtained if suitable calibration runs are done beforehand
- Low capital investment (a fraction of a new DTA or DSC which is ~\$60k)

Al-B Phase Diagram

© ASM International 2006. Diagram No. 2002079.

Smith Thermal Analysis Run on AIB₂

Smith Thermal Analysis Run on AIB₂ (15 °C difference)

Predicted Mg-B Phase Diagram (CALPHAD)

Pressure: 10^7 MPa (~1450 psi or 98 bar)

S. Kim et al., Journal of Alloys and Compounds 470 (2009) 85-89

Ramp/Dwell/Cool Runs in Mg-B Mixture

Second Ramp/Dwell/Cool in Mg-B Mixture

Smith Thermal Analysis Run on Mg-B Mixture

Ramp, Dwell, Cool on Mg/B mixture (99.9999% B)

MgB₂ from High Purity Boron

Expected Microstructure for Peritectic

Mg/B Microstructure – 99.9999% B

EMPA Measurements by John Donovan

Dark Phase – MgB₄

Element	Measured	Theoretical	
Mg	20.9%	20%	
В	78.7%	80%	
0	0.4%	0%	

Golden Phase – MgB₂

Element	Measured	Theoretical	
Mg	32.6%	33.3%	
В	66.9%	66.6%	
0	0.5%	0%	

XRD on Mg-B High Purity Ingot

Remaining work on Mg-B binary

- Redo Smith Method with the high purity boron (99.9999%) and magnesium and obtain the peritectic temperature
- Characterize the sample
- ??

Synthesis of Mg-B-C Alloys

Ternary Ingot from B₄C Powder

XRD on Mg-B₄C Ingot

Peak Shift in XRD

HKL	20 Pure MgB_2^*	2θ Mg(B _{1-x} C _x) ₂	Difference]
(001)	25.266 (3.5221 Å)	25.332 (3.5131 Å)	+0.066	(00x) peaks
(100)	33.483 (2.6742 Å)	33.962 (2.6375 Å)	+0.479	do not snift verv much
(101)	42.412 (2.1295 Å)	42.796 (2.1113 Å)	+0.384	indicating c
(002)	51.885 (1.7608 Å)	51.941 (1.7590 Å)	+0.056	← lattice
(110)	59.886 (1.5433 Å)	60.697 (1.5246 Å)	+0.811	parameter has little change
(102)	63.173 (1.4706 Å)	63.487 (1.4641 Å)	+0.314	
(111)	66.044 (1.4135 Å)	66.817 (1.3990 Å)	+0.773	
(200)	70.403 (1.3363 Å)	71.375 (1.3204 Å)	+0.972	
(201)	76.125 (1.2494 Å)	77.051 (1.2367 Å)	+0.926	
(112)	83.191 (1.1603 Å)	83.861 (1.1527 Å)	+0.670]

*Pure MgB₂ based on PDF #00-038-1369 and Cu $K_{\alpha1}$ =1.5405982 Å

VSM Measurement at 100 Oe

Preliminary TEM on Mg-B4C Ingot

Work to be done on Mg-B-C Alloys

- Synthesis of a few (~3-4) different alloys with various carbon doping levels
- Characterization with XRD, SEM, TEM, etc.
- ??