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ABSTRACT 
 
 
 
 

In this work, AC loss in superconducting composites was described using both an 

anisotropic continuum model and a discrete model. The efforts were concentrated in three 

main areas. First, the eddy current coupling loss of composites with rectangular cross 

section was calculated using an anisotropic continuum description based on a block 

model with different effective resistivities in each block. In this case, a numerical 

approach was used. This treatment, like the more typical lumped component network 

model, was able to describe many factors influencing the eddy current loss in the 

rectangular composites, such as twist pitch, aspect ratio, and core resistivity. However, 

the influence of core thickness and the presence of an outer sheath were also described 

with this model. Certain simplifying assumptions were used here to minimize 

computation time, while allowing the essential information to be extracted.  

In the second area, the eddy current loss of round composites were calculated 

from a discrete (network) point of view, and analytic expressions were developed which 

allow comparison to analytic expressions which were derived from effective medium 

theory. We need to measure only the contact resistance between the strands. The eddy 

current coupling loss of seven-strand MgB2 cables were then calculated by this model. 

With this model, it was possible to use a measured contact resistance between the strands 

to both predict the loss and compare to effective medium based resistivities. The results
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 from the block model and from the analytical model give results in reasonable 

agreement.  

 In the third part of the work, we attempt to compare the developed expressions to 

experiment. In some cases, data extant in the literature were used; in other cases, direct 

measurements were performed. For the rectangular geometry composites, existing data 

were sufficient. In the case of round composites, direct experiments were performed. The 

specific working medium chosen was round, seven-strand MgB2 cables.  

 In comparing measurements to theory, it was necessary to add the hysteretic 

component of loss. In this case, it was also necessary to include the effect of magnetic 

shielding. It was shown that there are two kinds of hysteretic losses in these 

ferromagnetic/SC composites; the real loss and the apparent loss. Reduction of the real 

loss is always smaller than reduction of the apparent loss due to the shielding effect of 

sample signal with respect to the pick-up coil of VSM (Vibrating Sample Magnetometer). 

In turn, the eddy current component for round composites was controlled by the 

contact resistance. The contact resistance was in some cases about two orders higher than 

the control samples when certain insulating surface treatments were performed on the 

surface of the individual strands of the cable. Loss predictions form contact resistant 

measurements were very low. However, actual loss measurements gave losses even 

lower, due to a low strand permeability.  
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 

 
1.1 Contents of this study 

A number of applications have been or are being pursed for superconducting 

materials, such as power transfer lines, power transformers, superconducting magnets for 

MRI (Magnetic Resonance Imaging), and for particle accelerators. However, because the 

available temperature range limited by their critical temperatures, cooling is needed for 

the application of these materials. In addition, any AC loss coming from the 

superconductors represents additional heat loads to the system, and must be analyzed and 

minimized. 

Superconducting materials are typically used in a form of composite, and a such 

are combined with low resistivity metals such as Cu and its alloys for LTSC (Low 

temperature superconducting composites) and Ag and its alloys for HTSC (High 

temperature superconducting composites). These metals employed both as matrix and 

sheath, surround the superconducting filaments, providing mechanical, electrical, and 

thermal protection of the composites. AC loss of these superconducting composites 

comes from both the superconducting filaments and the matrix materials. 

AC losses of superconducting composites can be classified either by external 
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source for the loss (magnetic field loss and transfer current loss) or by nature of the loss 

(hysteretic loss and eddy current coupling loss). This work focuses on the magnetic field 

loss which occurs when time-varying magnetic field applies to superconducting 

composites. Transfer current loss, also called self-field loss, occurs when AC current 

flows through superconducting composites. In practical application, the AC loss is 

summation of these losses. 

When time-varying magnetic field applies to a superconductor, hyeteresis loss 

occurs. To reduce this loss the superconductor is divided to many fine filaments. Then, 

the matrix of normal metal is used to protect these fine filaments. And, eddy current 

coupling loss occurs within these superconduting filaments and normal matrix 

composites. Since there are so many filaments (or strands in case of cables), it was 

impossible to apply Maxwell equations to each individual component with proper 

boundary conditions. To solve this problem and obtain the eddy current coupling loss of 

superconducting composites, there were two basic models. One of them is a discrete 

model which describe the loss by lumped components, i.e. interstrand contact 

resistance[1], the other is a continuum model which describe the loss by effective 

conductivity of the composite and consider the composite as a homogeneous material[2]. 

Analytic expressions can be obtained from these two models and well apply to 

strands in case of the continuum model and to cables in case of the discrete model. 

However, when the geometry of the composites becomes complicate and important to 

reduce the eddy current loss, a numerical method is needed[3, 4]. For example, the effects 

of filaments array structure have been studied using FEM. In this work, the effects of 

core and outer sheath geometry will be described by block model based on continuum 
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approach. This block model also can be applied to the loss of Rutherford cable which has 

been described by discrete model. Since the continuum approach was well applied to the 

case of cables, it is possible to compare the contact resistance from the discrete model 

and the effective resistivity from the continuum model. By doing this, it is possible to 

compare directly the eddy current loss of various composites (strands and cables) in 

terms of one parameter. 

In Chapter 1, the basic features of superconducting composites relevant to their 

AC loss are described. Two models for eddy current coupling loss of superconducting 

composites, the anisotropic continuum model and the discrete model (lumped model, or 

network model), are introduced and compared to each other. In Chapter 2, the numerical 

methods used in these calculations will be described. In Chapter 3, the experimental 

methods for direct measurement of the AC loss will be described in detail. Chapter 4 has 

two sections, the first part is the results from the anisotropic continuum description, in 

terms of a numerical model. It is shown that such a numerical anisotropic continuum 

model is particularly useful in explaining certain aspect of the eddy current coupling loss 

in rectangular composites. The second part of Chapter 4 details the results from direct 

experiments. Both eddy currents and hysteretic losses are measured for MgB2 

composites. For completeness, the magnetic shielding effects reducing the hysteresis loss 

of individual MgB2 strand are described. Next, contact resistance measurements and the 

microscopic analysis of superconducting samples are presented. Finally, the eddy current 

coupling loss values derived from numerical calculations, are compared to those from an 

analytical model. Chapter 5 summarizes the results of this study, and points to areas of 

needed future work. 
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1.2 AC loss of superconducting composites 

Superconductors have zero DC resistance, but do not have zero “ AC resistance” . 

When AC current is induced by time varying magnetic fields or applied by a direct AC 

current source, there is always AC loss in the superconductor. Even in a type I 

superconductor there is AC loss at high frequency (10 GHz)[2, 5]. There are three types 

of AC loss; hysteresis loss, eddy current coupling loss, and normal eddy current loss. 

 

1.2.1 Hysteresis loss 

When a magnetic field larger than Hc1 is applied to a type II superconductor, some 

magnetic flux can penetrate inside, as shown in Fig. 1.1 and Fig. 1.2. Within the 

penetrated regions the field is present in the form of fluxons. The regions within the 

fluxons have normal resistivity. These fluxons may either be “ free”  in a perfectly 

homogenous sample or “pinned”  by their interactions with defects. Flux motion is 

induced by the Lorentz force, F = J × B. In the former case, there is a viscous nature to 

flux motion under AC fields. In latter case, the Lorentz force works against the pinning 

force, leading again to loss, related to the flux motion. Such flux motion always occurs in 

pinned Type II superconductors, because locally the Lorentz force overwhelms the 

pinning force (specific pinning force × density of pins), and this leads to irreversible 

behavior, i.e, loss. M-H loops of reversible and irreversible type II superconductor are 

shown in Fig. 1.3. After the applied magnetic field is cycled and goes to zero, there is a 

remaining magnetic flux, (i.e., fluxons) in case of an irreversible type II superconductor. 

The area of the M-H loop is the dissipated energy per one cycle, the hysteresis loss.  

We can calculate the hysteresis of a superconductor by a basic power relation 
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even if we do not know the exact mechanism. 

                                          � ⋅=
Vs

dVEJP                                          (1-1) 

where J is the current density, E is the electric field, Vs is the sample volume, and P is the 

loss per second. In (1-1), we note that the integrated volume is the filamentary volume of 

the superconducting composite. When we calculate the eddy current coupling loss, the 

integrated volume will be the filamentary region volume, which is defined as the 

superconducting filaments as well as the matrix between them. 

To calculate this hysteresis loss analytically, we must know the current 

distribution inside the superconductor, J. We need a constitutive law (e.g., ohm’s law). 

Such a constitutive model for superconductors is available; it is Bean’s critical state 

model. In this model, we do not need to know “the resistivity”  of superconductor, since it 

assumes a constant critical J (Jc) of superconductor. In this model, there are only two 

cases; J is zero or the critical current of superconductor, Jc. 

        =
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∂==
x

B

E

E
JJ Z

C   constant , if E is non zero.   or  0=J  , if E = 0                (1-2) 

The magnetic field and current distribution dictated by (1-2) are shown in Fig.1.4. and 

Fig.1.5. for a cylindrical sample[6]. The term EE /  determines the direction of current. 

The critical current density, Jc, and the associated flux gradients, are due to (and 

proportional to) flux “pinning”  on defects. These may take various forms, including grain 

boundaries, point defects, dislocations, and twin boundaries. Increased flux pinning leads 

to a higher Jc and thus a larger area for the M-H loops. (1-1) has been calculated for a 

number of simple sample shapes and in case of cylindrical geometry, when field is 
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applied to perpendicular to axis (e.g., wire), the hysteresis loss per cycle per unit volume 

is[2] 
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=     (J/m3)     if    H0  >> Hp             (1-1-b) 

Here, Hp is the penetration field, Hp = (2/π ) r0 Jc, and r0 is radius of 

superconducting wire, H0 is the applied magnetic field. If r0 is the radius of 

superconducting filament in a composite, the superconducting volume fraction, λ, should 

be included in (1-1-a) and (1-1-b). 

 

1.2.2 Eddy current coupling loss 

If an electromagnetic field changes with respect to time, eddy currents are 

induced within materials which are normal conductors. This leads to energy loss. 

However, in the case of superconducting composites, there are superconducting filaments 

embedded within the normal metal matrix. This filamentarization is needed to reduce 

hysteresis loss which is proportional to diameter of a superconducting filament. At quasi-

static frequencies, the loss is hysteretic only in nature. When the frequency of the applied 

field increases, the filaments of superconducting composite begin to “couple” . Here, the 

term “couple”  is used to describe currents which have paths which are partially within the 

superconducting filaments and partially in the matrix as shown in Fig. 1.6. When 

filaments are completely coupled, they behave as if the composite was a monofilament 

with a diameter equal to that of the filamentary region. These currents, which are 
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essentially-normal metal, shielding-eddy currents, exacerbated by the presence of high 

conductivity paths, have losses associated with them. In fact, even though the losses 

originate exclusively with the normal conducting regions of the path, the losses from the 

“coupling currents”  are far greater than normal eddy currents. If there are no 

superconducting filaments and only a normal conducting matrix exists, then only normal 

eddy current loss exists. However, if there are superconducting filaments in the current 

path of the eddy current, the resistance of current path is greatly reduced, therefore the 

circulating eddy currents increase and AC loss also increases. This enhanced eddy current 

loss, as noted above, is called coupling current loss. It must be noted that coupling current 

loss is also sometimes called simply “eddy current loss” , when the normal eddy current 

loss inside the metal matrix can be ignored.  

There are two basic models used to describe eddy current coupling loss in 

superconducting composites. One is the anisotropic continuum model (effective medium 

theory) from Carr[2] and another is the discrete model (network model, lumped model) 

from Morgan[1]. In the anisotropic continuum model, the superconducting composite is 

treated as a homogeneous material which is anisotropic. It can be treated as 

“homogeneous continuum” because the number of filaments is very large, and therefore, 

the filaments and the matrix can be treated as an “effectively averaged”  material. The 

same power loss equation as (1-1) can be used, but the integrated volume is the 

filamentary region volume[7].  Based on (1-1), the coupling loss of round twisted 

composite in the low frequency range is[2]  
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Here, Pe is the eddy current coupling loss, Vs is the volume, Lp is the twist pitch, f 

is the frequency, µ0 is the permeability of vacuum, H0 is the applied magnetic field, and 

σ⊥ is the effective transverse conductivity. For the eddy current coupling loss calculation, 

we use an “effective”  transverse conductivity, σ⊥. This represents a constitutive law for 

superconducting composites. For various sample shapes, Campbell calculated the 

coupling loss including a shape factor due to demagnetizing fields[8].  

The eddy current coupling loss in Rutherford cables (a kind of rectangular 

superconducting composite) is explained within the network model of Morgan[1]. It has 

been much further developed by Sytnikov[9, 10] and Verweij[11]. Some comparison of 

the anisotropic continuum model and the network model has been made by both Carr[12] 

and Akhmetov[13]. An important distinction is that the network model uses interstrand 

contact resistance to describe eddy current coupling loss instead of an effective resistivity 

averaged over the whole cable. In particular, the network model is a lumped component 

model, where the projection of upper strands and lower strands produce the shape of 

network and the resistances between these strands are the determiner of the coupling 

current loss. In the expression by Morgan, 
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where Ns is the number of strands in the cable, w is the width of cable, t is the thickness 

of cable, Lp is twist pitch, )( 0HB �� µ= is the magnetic field rate of change, Bm is the 

magnetic field amplitude, and Rc is the interstrand contact resistance between the upper 
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layer and bottom layer, per unit cell (in an area roughly the strand diameter squared). A 

comparison of expressions from the annisotropic continuum model and those from the 

network model is presented in Appendix A, where a relationship between the Rc 

parameter of the network model and the σ parameter of the anisotropic continuum model 

is derived. 

 

1.3 Factors affecting AC loss 

1.3.1 Magnetic field 

In (1-2), we described a “single-valued” Jc (Bean’s critical state model). However, 

we can let Jc depend on applied field. According to Kim’s formulation of the critical state 

model this is expressed as (1-5) [6] 

                                              
0

)(

Hc

T
Jc +

= α
                                       (1-5) 

Here, α is a constant when temperature is fixed and c is also a constant. H0 is the 

applied magnetic field. (1-5) is the new constitutive law when Jc is dependent on 

magnetic field.  

Qualitatively, we can expect from (1-1-a), a forth power dependence of hysteretic 

AC loss on applied field H0 below the penetration field Hp. We must pay attention to the 

intensity of applied field when we analyze data with (1-1-a, b). If H0 < Hp, hysteresis loss 

decreases with increasing critical current, Jc. If H0 > Hp, hysteresis loss increases with 

increasing Jc. 

The effect of magnetic field on the coupling current loss is more direct according 

to (1-3). The dependence on the square of the magnetic field originates from fact that the 
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electric field within the superconducting composites depends on the magnetic field 

change via Maxwell’s equation and the loss is the product of J⊥ and E = J⊥ /σ⊥. Here ⊥ 

means “effective transverse”  for any quantity, i.e., J⊥ is the effective transverse current 

density. 

 

1.3.2 Frequency 

The hysteresis loss per cycle is typically considered to be independent of the 

frequency. However, the eddy current coupling loss per cycle is linearly dependent on the 

frequency in the low frequency range before all the filaments couple and “saturation”  

occurs. 

In the low frequency range, the total AC loss per cycle is the sum of the hysteresis 

loss (1-1) and the eddy current coupling loss (1-3).  

                                         fQQQ eh ⋅+=             (J/m3)                                        (1-6) 

If we draw a line describing the measured AC loss with respect to frequency, the 

intercept is the hysteresis loss, and if we deduct this hysteresis loss from the total loss, we 

can obtain the eddy current coupling loss per cycle. Thus, from the frequency dependence 

of AC loss we can differentiate the hysteretic loss from the eddy current coupling loss[14, 

15]. Except in the very low frequency range in which flux creep occurs, the independence 

of loss per cycle on frequency is used for verifying hysteresis loss in AC loss 

measurements even in HTSC[15-19]. But it is reported that in HTSC hysteresis loss can 

also depend on frequency to some extent [20-24]. Dependence of such creep related 
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effects on frequency are affected by many factors such as magnetic field, temperature, 

and so on. 

 

1.3.3. Temperature 

When temperature rises, Jc decreases as shown in Fig. 1.7. From (1-1) it is 

expected that the hysteresis loss will be reduced when H0 > Hp. When temperature rises, 

the magnetization of the superconducting composite decreases, therefore, the area of the 

associated M-H loops decrease and the AC loss per cycle also decreases.  

However, when the temperature is high enough and the frequency is low enough, 

we can see that flux creep occurs. Flux creep is a phenomenon where the pinned fluxon 

inside superconductor becomes thermally activated at elevated temperatures. The 

hopping rate of a pinned fluxon from site-to-site follows an Arrhenius type equation (1-7) 

                                       )/)(exp( 00 TkUUrr BT−−= ��
                      (1-7) 

U0 is activation energy for hopping, UT is the amount of the reduction of 

activation energy by thermal agitation. A characteristic E-J curve is shown in Fig. 1.8. If 

there is flux creep, the E-J curve of the superconductor becomes nonlinear, and Jc is no 

longer a step function. There is always an additional energy dissipation due to the finite 

resistivity stemming from flux creep, even at a current smaller than Jc[25].  

The effect of flux creep on the coupling current loss appears as an increased 

effective resistivity. When flux creep occurs, there are additional resistive current paths 

along the filaments[26].  
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1.3.4 Filament diameter 

From (1-1-a, b), the hysteresis loss per unit volume is proportional to the filament 

diameter when the applied field is greater than the penetration field of the 

superconducting composite. Usually, superconducting composites are used above the 

penetration field (e.g., magnet applications). Therefore, it is desirable to make the 

filaments as fine as possible, but this is difficult in case of HTSC. Since a matrix is 

needed to support the filaments, coupling current loss occurs within each strand.  

On the other hand, a thick monofilament can be favorable to reduce AC loss when 

DC transport current flows in the superconducting composite under a transversely applied 

AC magnetic applied field [27-31]. Under a transverse AC applied magnetic field, DC 

transport current causes additional AC loss due to “dynamic resistance” . If the applied 

field is kept below the penetration field (by increasing the filament diameter, e.g.), there 

is fluxon-free region in the center of superconductor and the DC transport current flows 

through this region without interacting with the flux.  

 

1.3.5 Twist pitch 

From (1-3), we know that eddy current coupling loss is proportional to the square 

of twist pitch Lp. Lp is similar to the sample length, Ls in case of an untwisted sample (Lp 

≈ 2Ls). To reduce eddy current coupling loss, it is necessary to reduce the sample length, 

or reduce the twist pitch of sample. According to Wilson [32], there is a critical sample 

length below which filament coupling does not occur. For the model system of a normal 

metal sandwiched within two superconducting slabs,  
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In (1-8), ds is the thickness of superconducting slab, and ρm is resistivity of normal metal. 

This is too simple model to be quantitative for real strand, but such a ‘decoupling twist 

pitch’  does exist in twisted multifilamentary superconducting composites[33-37]. From 

(1-8), we know that twist pitch should be less than Lc for reducing eddy current coupling 

loss. However, the minimum twist pitch is often restricted by fabrication process limits 

(e.g., filament breakage and bridging, especially in HTSC).  

The twist pitch of a superconducting composite should be as short as possible to 

reduce eddy current coupling loss in transverse fields. However in the presence of 

longitudinal field there is optimum twist pitch for minimum coupling loss[38, 39]. 

 

1.3.6 Matrix resistivity 

Since there is a limit to reducing the twist pitch of a superconducting composite, 

we must increase the effective transverse resistivity if we wish to further reduce the eddy 

current coupling loss. Matrix resistivity does not affect the hysteresis loss of 

superconductor composite. If we increase the effective transverse resistivity, ρ⊥, we know 

from (1-8) we can also increase the critical twist pitch (in superconducting composites, ρ⊥ 

is equivalent to ρm).  

There are two methods to increase ρ⊥. One is alloying the matrix, the other is 

inserting a resistive barrier inside the matrix. In LTSC, Ni or Mn is added as an alloying 

element. Mn is an effective element for Cu matrix [40, 41]. It increases electrical 
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resistivity but does not reduce thermal conductivity significantly, which is important to 

cryostability. In HTSC, the matrix is Ag, which has a high conductivity. Adding Au to 

the Ag matrix is an effective, but expensive, method for loss reduction. 

Another way to increase the effective resistivity is by inserting a resistive barrier. 

The barrier material should not react with the ceramic superconducting filaments in 

HTSC and should be easily co-deformable with Ag in a rolling process. In some studies, 

BaZrO3 or SrZrO3 has been used as a resistive barrier material[42-47]. Using the barrier 

material to increase the effective resistivity is in theory better than an matrix alloying 

method, since the longitudinal resistivity along the composite axis which is important for 

the cryostability of system remains low, while only the transverse effective resistivity is 

increased. 

We note that σ⊥ is not the matrix conductivity itself. It is the “effective”  

transverse conductivity of the whole composite and is given as[2] 

                 
)1(
)1(

λ
λσσ

−
+=⊥ m         if the interface resistivity is low    (1-9-a) 

and           
)1(
)1(

λ
λσσ

+
−=⊥ m         if the interface resistivity is high   (1-9-b) 

 Here σm is the matrix conductivity and λ is the volume ratio of the 

superconducting filaments to the whole composite volume. The derivation of (1-9) is 

given in Appendix C (see also [48]). If there is a resistive barrier (1-9) has different form, 

namely[49] 
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where X= σmr f / σbdb, r f is the radius of the filament, σb is the conductivity of barrier, and 

db is the thickness of the barrier. From (1-10) we can recover (1-9). If there is no barrier, 

X→ 0 and (1-10) becomes (1-9-a). If there is perfect barrier, X→ ∞ and (1-10) becomes 

(1-9-b).
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Fig. 1.1. Schematic diagram of the mixed state of type II superconductors and a “ fluxon” . 

Fig. 1.2. Critical fields in superconductors. Below Hc1 a type II superconductor is in the 
Meissner state. At Hc1 Flux begins to penetrate until Hc2 is reached. Above Hc2 it 
becomes a normal conductor. A type I superconductor is in itsMeissner state below Hc  
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Fig. 1.3. M-H loops of irreversible and reversible type II superconductors. The 
area of the M-H loop (dashed one) is the hysteresis loss of an irreversible type II 
superconductor which has flux pinning. 

Magnetization, M

Magnetic field, H

Irreversible type II superconductor

Reversible type II superconductor

Magnetization, M

Magnetic field, H

Irreversible type II superconductor

Reversible type II superconductor



 18

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4. Current distribution in a cylindrical superconductor with an infinite length 
when the applied field is parallel to the axis using Bean’s critical state model. Here, 
Hp is the penetration field. 
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Fig. 1.5. Current distribution in a cylindrical superconductor with infinite length when 
the applied field is parallel to the axis using field dependent Jc (Kim’s model). 
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Fig. 1.6. Filament coupling in superconducting composites. (a) No coupling. Super 
electrons flow only inside superconducting filaments. Normal eddy currents are 
not shown here. (b) Coupling electrons begin to flow in matrix and 
superconducting filaments. 
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Fig. 1.7. Critical temperature, field, and current density of superconductors. Within 
this surface, the material is in the superconducting state. 

Fig. 1.8. E-J characteristics in the presence of flux creep. The solid line is for a low 
temperature superconductor while the dashed one is for a high temperature 
superconductor. 
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CHAPTER 2 
 

 

NUMERICAL METHODS 

 

 

 The calculation of the electromagnetic fields within finite size, three-dimensional 

objects cannot be performed easily by analytic methods under fully general conditions 

particularly for the case of materials with anisotropic properties which have principle 

anisotropy axes non-aligned with the sample dimensions. In this study, some of the 

models developed are tested using numerical methods, in particular FEM (Finite-

Elements-Method) commercial software (Maxwell 3D). The details and basic principles 

of FEM for electromagnetic fields can be found in other references[1, 2], below a general 

description of the use of commercial software packages is presented. 

 

2.1 Conductivity ratio limit 

 For proper simulations, the conductivity along the filamentary or strand direction 

within the composite should be as large as possible. However, due to the computational 

capacity of presently available hardware and software, the conductivity value in the 

superconducting direction was chosen to be 1012 S/m. More important than this is that
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difference in conductivity between the superconducting direction and the normal 

conducting direction should be as large as possible. Optimally, this difference is 106 – 108 

S/m[3, 4]. Therefore, 106 S/m was chosen for the normal conducting direction. The 

conductivity of the vacuum surrounding the sample is fixed at zero. The maximum 

allowable conductivity difference between the highest and lowest conductivity regions 

defined within the available software and hardware turned out to be 1012 S/m.  

 If an anisotropy of conductivity tensor within normal metal region becomes 

larger, that is a conductivity of filamentary direction becomes much larger than a 

conductivity of transverse direction, then, the loss in this region approaches the loss value 

of the superconducting composite with superconducting filaments and normal metal 

matrix[5]. This indicates that a conductivity difference of 106 S/m between the 

superconducting filament direction and the transverse direction is sufficient to obtain 

sound numerical results for superconducting composites. The relationship between the 

base coordinate system and the sample geometry-based coordinate system is shown in 

Figure 2.1, and the definition of conductivity tensor in each region is given in Table 2.1. 

Definitions for both the four-block model and the core model are shown. 

Nevertheless, if the conductivity difference is too large, numerical instability will 

occur[4, 6]. To preclude this, numerical instability was tested for by two criteria in this 

study. First, the results were checked for discontinuities, a clear sign of numerical 

instability. Secondly, the invariance of the result with increasing mesh refinement was 

required. 
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2.2 Geometry and mesh size 

 The eddy current loss in a Rutherford cable shows a saturation behavior with 

respect to Ls/Lp when sample length is larger than five times the twist pitch[7]. Here, Ls is 

sample length and Lp is twist pitch. Thus, we set Ls/Lp > 5.7.  

The size of the surrounding vacuum box must be large enough to keep the 

demagnetizing field surrounding the sample from interfering with the boundary 

conditions. If the surrounding sample box is too small, the correct solution will not be 

obtained. But, as the region grows, we need a finer mesh requiring greater computing 

capability. When the sample is a long rectangular shape with a size of 300 x 15 x 4 mm, 

the size of the surrounding vacuum box is 500 x 300 x 300 mm.  The average number of 

nodes for this model is shown in Table 2.2. The size of the surrounding vacuum box is 

300 x 60 x 60 mm when the sample is a long cylindrical shape with dimensions of 200 

mm length by 4 mm radius. The superconducting composite region has a finer mesh as 

compared to the surrounding vacuum region. An example of a sample geometry and its 

associated mesh is shown in Figure 2.2. 

 

2.3 Boundary setup 

 In a quasi-static field, the magnetic vector potential, A should be properly defined 

at the outer boundary of the surrounding vacuum box in order to produce a uniform, time-

harmonic magnetic field. In Maxwell 3D software, it was not necessary to input the 

specific value of A, since it automatically defines that value at the outer boundaries when 
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we specify the applied magnetic field. Since the field is time-harmonic, non-linear 

problems cannot be considered by the method used in the present study. 

 The effective permeability of the superconducting composite is assumed to be 1.0, 

since we are considering the case of full field penetration. Hysteretic components are not 

computed in the eddy current calculation, these can be added separately. 

 

2.4 Solver type 

 There are two solver types in the Maxwell 3D software package, a direct solver 

and an iterative solver. The iterative solver, requiring less computing memory stops its 

iteration when the relative error (the difference between the previous solution and the 

current solution) is smaller than a predetermined error limit, for example, 10-8. However, 

it frequently fails to converge for models with conductivity differences as high as 1012 

S/m as in this study, and thus the direct solver was used.  

 

2.5 Loss calculation method 

 After the current distribution was calculated from FEM, the AC loss, especially 

the eddy current coupling loss, could be calculated by either of two methods. First, the 

loss can be calculated by using  

                                          � �� ⋅⋅=⋅=
VV

JdVJEdVJP
σ
1

                                 (2-1) 
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Since we have a finite conductivity (1012 S/m) in the superconducting direction, (2-1) has 

non-zero contribution only along the normal conducting direction, the z direction in the 

present study. This direction is perpendicular to the axis of the “ length”  of the 

superconducting composites and parallel to the applied magnetic field. To calculate 

average power loss, we calculate the loss at a phase angle of 90°, and then multiply it by 

0.5[6]. 

 The second method is to calculate magnetization, M using  

� �=⊗=
V V

zyx

dV

JJJ

zyx

kji

JdVrM  

                         ( )� ⋅−⋅+⋅−⋅−⋅−⋅=
V

yyzyz dVyJxJkzJxJjzJyJi )()()(  

                         =  Mx ⋅i+ My ⋅j + Mz ⋅k                                                                (2-2)  

Since the applied magnetic field has a z component only, it is sufficient to calculate Mz 

contributions only. 
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Fig. 2.1. The relationship between the base coordinate system and the sample 
geometry-based coordinate system. xb,yb, and zb are the base coordinates and xtl,ytl, 
and ztl are the sample geometry-based coordinates within top layer. xbl,ybl, and zbl are 
the sample geometry-based coordinates within the bottom layer. Within the side 
blocks, both coordinate systems are identical. 
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Block Four-block model Core model 

Top layer 

σxx = 1012 (S/m) 
σyy = σzz = 106 (S/m) 

xtl, ytl, ztl are rotated around zb such that xtl now lies along 
the filamentary  direction defined by Lp (+ rotation) 

same 

Bottom layer 

σxx = 1012 (S/m) 
σyy = σzz= 106 (S/m) 

xbl, ybl, zbl are rotated around zb such that xbl now lies 
along the filamentary  direction defined by Lp (- rotation) 

same 

Left and right 
side block 

σxx = 106 (S/m) 
σyy = σzz = 1012 (S/m) 
xs, ys, zs = xb, yb, zb 

same 

Core N.A. 
xc, yc, zc = xb, yb, zb 

Isotropic σ = 104-106 (S/m) 
 
 
Table 2.1. Definitions of axes and the conductivity tensor for the four-block model. 

 Four-block 
model 

Core model Cylinder model Seven-strand model 

Surrounding vacuum 17000 14000 20000 3500 

Top & Bottom layer 13500 x 2 9500 x2 

Left & Right block 3500 x2 3000 x2 

Core -- 10000 

Each 4 block  

has about 
10000 

Each 8 block has  

about 2500 and  

core region has about 
10000 

Total ≈50000 ≈50000 ≈60000 ≈35000 

 
 
 
 
 

Table 2.2. Number of tetrahedrons in each block region. 
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Fig. 2.2. Example of sample geometry and mesh. (a) An example of a selected 
sample geometry and its associated mesh in the case of four-block and core 
models. (b) The mesh of the sample region is finer than that of the surrounding 
regions. 

(a) 

(b) 
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CHAPTER 3 
 

 
 

 
EXPERIMENTAL METHODS 

 
 
 
3.1. Sample specification 

3.1.1 Hysteresis losses in samples with magnetic shielding effects 

 Two different MgB2 composite strand types were measured in this work. The first 

strand type was manufactured by the University of Wollongong using standard powder-

in-tube methods. The starting tube was Fe with an outside diameter of 10 mm, a wall 

thickness of 1 mm, and was 10 cm long. Magnesium (99% purity) and amorphous boron 

(99%) with the stoichiometry of MgB2 were mixed together and used to fill the tube. 

After wire drawing the strand was sintered in a tube furnace, where T ranged from 600 to 

1000 °C for 1–48 h[1]. A high purity argon gas flow was maintained throughout the 

sintering process. For comparison a sintered MgB2 sample with no Fe sheath was 

prepared with dimensions 0.35 × 0.65 × 0.174 cm3.  

The second strand type was manufactured by Hyper Tech Research. These strands 

were made by a CTFF (Continuous Tube Forming and Filling) method. Magnesium (99% 

purity) and amorphous boron (99%) with the stoichiometry of MgB2 were mixed and 

then slightly mechanically alloyed, after which the powder was filled into a thin Fe tube
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formed from a strip during filling. This rod was then inserted into a monel tube 6 mm OD 

and then drawn to final size. 

 Both types of MgB2 strands with different heat treatments and power 

compositions were measured at 4.2 K using a 9 T VSM. Details of sample specifications 

are listed in Table 3.1. 

 
3.1.2 Samples for contact resistance and AC loss measurements 

 Seven strand MgB2 cables with a 1 + 6 geometry (one central strand surrounded 

by six other strands) were fabricated by Hyper Tech Research. The individual strands 

were made by the CTFF method. Before twisting the strands, various insulation methods 

such as oil dipping and high temperature painting were applied. Then, they were heat 

treated at 700 –750 °C for 15 to 30 minutes in flowing argon gas. Details of sample 

specifications are given in Table 3.2. The contact resistance between each of the strands 

within a given cable was measured by four point method at 4.2 K in liquid He. To insure 

an “averaged” measurement, the sample length was more than 11.5 cm at minimum. By 

the symmetry of the cable, we need to measure only four contact resistances between 

specific strands for a given cable, as shown in Fig. 3.1. (Between 1 and 2(R1), 1 and 

3(R2), 1 and 4(R3), 1 and 5(R4)). A 0.5 A DC current was applied to the current leads and 

the voltage was measured. After this, the polarities of the current were reversed and the 

voltage was measured again. After averaging the absolute values of the voltages and 

dividing by 0.5 A, the contact resistance between strands was obtained. 
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3.2. VSM (Vibrating Sample Magnetometer) 

3.2.1. 1.7 T VSM 

 A VSM (Vibrating Sample Magnetometer) measures the magnetic moment of a 

sample. A slowly ramping (nearly static) magnetic field is applied to the samples, the 

sample itself vibrates, and the magnetic moment of sample is detected by a pick-up coil. 

The voltage signal of the pick-up coil is proportional to the magnetic moment of the 

sample. After integration of the voltage signal coming from the pick-up coil with respect 

to time, the magnetization can be calculated, and an M-H loop is generated. This signal is 

calibrated against the saturation magnetization of a Ni standard. The area of the M-H loop 

is the AC loss of the sample per cycle. 

In this experiment, a VSM model 4500 from EG&G was used. The schematic and 

the photograph of the 1.7 T VSM are shown in Fig. 3.2 and Fig. 3.3. Magnetic fields up 

to ±1.7 T generated by a water cooled resistive magnet were applied to the sample space. 

The current needed for the magnet was supplied by a “DC” bi-polar power supply. The 

magnetic field sweep rate could be varied from 2.4×10-3 to 7.0 × 10-2 T/sec, which is a 

much lower frequency range than that of the pick-up coil method to be described in the 

following section. The applied magnetic field was measured by a Hall sensor located near 

the sample. 

The temperature of the sample can be controlled by adjusting the opening of a 

needle valve connecting the He-reservoir with the sample measuring space, in 

conjunction with a heater which can vaporize and heat the helium within the sample 

space. The temperature can range from 4.2 K to room temperature. A temperature sensor 

was attached to just above the sample in order to measure the temperature as accurately 
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as possible. Previous measurements show this to be accurate to within a tenth of a degree. 

If we pump the sample space, temperatures as low as 2.2 K are possible. The orientation 

of sample can be changed by rotating the VSM head which vibrates the sample. 

Therefore, we can apply a magnetic field at an arbitrary angle to the wide surface of the 

sample. The maximum sample length that can be measured in 1.7 T VSM is about 1.6 cm 

because of the size of the pick-up coil and the size of the sample space. When we affix 

the sample to the sample holder for use at low temperatures, we use silicon grease and 

teflon tape.  

 

3.2.2. 9 T VSM 

 In order to measure tapes, wires and cables, a system which would allow larger 

samples was needed. Most VSM systems are made to measure small samples. However, 

in the course of this work a VSM-type machine capable of measuring larger samples was 

developed. It was built using a 9 T magnet in order to have a larger available field, so it 

became designated the “9 T VSM”. The magnet itself is a NbTi superconducting magnet 

operating at 4.2 K, in a liquid He cryogenic system with a liquid nitrogen outer jacket. A 

maximum magnetic field sweep rate of 0.0375 T/sec is possible. Since the magnetic field 

sweep rate is relatively low, we cannot measure the eddy current coupling loss with the 9 

T VSM. However, the hysteric components can be measured. 

 A schematic of the pick-up coil for 9 T VSM is shown in Fig. 3.5. 40 gauge 

copper wire was wound onto a G10 coil former, after which GE varnish was applied to 

protect the coil. GE varnish is a standard low temperature insulation, because commercial 



 39

epoxy will crack at LHe temperatures. A maximum sample length of 3 cm can be 

measured with this pick-up coil arrangement. 

Since the sample rod (6 ft.) is about 2 times longer than that of the 1.7 T VSM, 

locating the sample at the center of the pick-up coil as precisely as possible is essential to 

obtaining a sound M-H loop. A small sample coil was made to find this exact location 

along the axis z. A current was impressed to the sample coil, and the magnetic moment of 

the sample coil was measured as a function of position within the pick-up coils. By 

finding the maximum of the response curve generated in this way, the proper z-axis 

position of the sample was determinded. The results are displayed in Fig. 3.6. The 

sensitivity of pick-up coil at various points in x-y plane can be determined by measuring 

the magnetic moment of several sample coils with different lengths. The result of 

measurements of the length dependence of magnetic moment in x-y plane were displayed 

in Fig. 3.7. The schematic of the sample coil is shown in Fig. 3.8. The width of the 

sample coil and the number of turns are the same for all sample coils and only the length 

is changed. All sample geometries are calibrated using a Ni standard of the same shape as 

the sample. 

Since the sample space of the 9 T VSM is much larger than that of 1.7 T VSM, 

frozen N2 and O2 can more readily formed inside the sample space, and this can interfere 

with the vibration of the sample. If this occurs, a sound M-H loop cannot be obtained. To 

prevent this, it is important to fill the sample space with He gas, pumping out all other 

gases from the sample space before opening the needle valve and evaporating the liquid 

He. 
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3.2.3. Pick-up coil method 

 The pick-up coil measurement system in this experiment was initially modeled 

after that of Kyushu University[2]. However, there were numerous modifications 

including some to the AC power circuit as well as the geometry of pick-up and cancel 

coil, and the mode of signal cancellation. In the pick-up coil method, the sample does not 

vibrate. However, the magnetic field experienced by the sample varies with time at a 

much larger rate than in the VSM. To generate a magnetic field of 0.1 T in a external 

magnet wound with 1510 turns, having a self inductance of 90 mH, and an area of 6.21 

×10-3 m2, a current of 10.41 A is required, 

              
mAN
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B

⋅
⋅=  ,         41.10
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)10445.4(15101.0
3

22

=
×

×××=
⋅⋅

= −

−π
L

ANB
I m ampere. 

Here, Am is the cross sectional area of the external magnet (primary coil). The external 

magnet has an inductance (L) and a resistance (R). To maximize the field, we had to add 

a capacitance (C), making a R-L-C circuit with minimum impedance at any given 

frequency. The resonant frequency of a R-L-C circuit in series is given by 
CL ⋅

= 1
0ω . 

The needed capacitance at the given frequency is then 
2

1

ω⋅
=

L
C . We chose several 

frequencies and then calculated the needed capacitance values. The total impedance of 

this R-L-C circuit was then given by 222 )()( CLCL XXXXRZ −≈−+= . Here, XL = 

ω L = 2π f L and XC = 1 /(ω C) = 1 /(2π f C). The impedance Z at different frequencies 

using several values of capacitance is displayed in Fig. 3.9. With a maximum voltage 

output of the AC power supply at 150 volts and the required current 10.41 ampere, an 
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impedance below 14.4 ohm is enough to generate a magnetic field up to of 0.1 T. That 

the field distribution inside the external magnet should be uniform was confirmed using a 

numerical calculation, the results of which are shown in Fig. 3. 10. 

The sample, now immersed in field, shields this field to some extent. The level of 

shielding determines the resulting B, which can be measured by a pick-up coil wrapped 

around the sample. The voltage signal measured by the pick-up coil contains the voltage 

signal generated by the external time-varying magnetic field. This signal must be 

cancelled using the canceling coil. The geometry and the number of turns of the pick-up 

coil and the cancel coil are nominally identical and they are located symmetrically within 

the external magnet. The schematic of the electrical circuit of this experiment is shown in 

Fig. 3.11. To damp the oscillations in the pick-up and cancel coils a 100 Ω resistance was 

connected in series to both pick-up and cancel coils. A resistance divider network 

connected in parallel to the pick-up coil was used to fine tune the compensation. To 

measure the magnetic field amplitude, an additional pick-up coil was inserted as shown in 

Fig. 3.11. The dimensions of all pick-up coils as well as the external magnet coil are 

displayed in Table 4.  

 The applied magnetic field and the sample magnetization are given by the 

integration of voltage signal from each measuring coil as follows[2, 3]  

�⋅= dttVctH f )()(  , 

� −⋅= dttVctM cp )()(  
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Here, c is a constant dependent on the number of turns of the coil and the cross sectional 

area of the coil. Vf (t) is the voltage signal from the magnetic field measuring coil and Vp-c 

(t) is the voltage signal from pick-up coil after cancellation. The data from the 

oscilloscope are numerically integrated using a commercial software package (Sigma plot 

8.0). 

 After all measurements, the voltage signals for the magnetic moments are 

measured again without the samples under the same conditions to estimate the error in the 

system. This error comes from the incomplete cancellation of the voltage from the pick-

up and canceling coils. Perfect cancellation is almost impossible in practice since small 

variations in pick-up and cancel coil symmetry will occur due to the winding process. 

The error signals are determined and then subtracted from each initial voltage signal from 

the pick-up coil and M(t) is given by numerical integration of these signal after the 

subtraction.    

 The generated magnetic field amplitude can be checked from the voltage signal of 

the field measuring coil using 
dt

dBAN

dt

ABNd
V cc ⋅−

=
⋅−

=
)(

. If the cosine waveform of 

Kcos(ωt) is assumed for the voltage signal, then 
dt

dBAN
tK c⋅−

=)cos(ω  and therefore, 

)sin( t
AN

K
B

c

ω
ω⋅⋅

−= . Here, N is the number of turns of the field measuring coil, Ac is 

the cross section area of that coil and K is a constant. For example, Ac is π × (8 × 10-3)2, N 

is 721 and K is 9.6994 at 75 Hz by fitting the voltage signal data to a cosine waveform. 
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Then, the maximum field amplitude B is 0.142 T and an rms magnetic field of 0.1 T is 

generated, as expected. 

 Finally, the voltage signal for sample magnetization was calibrated. This can be 

done either by using a standard sample with a known magnetic property or using small 

sample coils with a known number of turns and cross sectional area. We chose pure iron 

(Fe) which is a soft magnetic material. Several Fe strips were measured together using 

the 1.7 T VSM as well as the pick-up coil method. After normalizing with respect to the 

weight of the Fe strips, the sample magnetization was calibrated. The result of calibration 

is shown in Fig. 3.12. The conversion factor was 508.83. Since the Fe strips were 

measured with the wide surface of the Fe strips perpendicular to the magnetic field, the 

M-H loops show some demagnetizing effect. But, it was assumed that deviation from 

complete saturation was the same for both the 1.7 T VSM measurements and the pick up 

coil method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Name Heat treatment Structure Manufactures 

DMGB1 800 °C,   30 min. MgB2 / Fe 

DMGB3 1000 °C, 30 min. MgB2 / Fe 

DMGB4 800 °C,   30 min. (MgB2 + C) / Fe 

DMGB6 1000 °C, 30 min. (MgB2 + C) / Fe 

U. of Wollongong 

OSU225 700 °C,   15 min. (MgB2 + SiC) / Fe /Monel 

OSU226 700 °C,   15 min. MgB2 / Fe /Monel 
Hyper Tech Research 

 

Table 3.1. Sample specifications for the 9 T VSM. 
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Fig. 3.1. Seven strand MgB2 cables with a 6 + 1 geometry. 

Table. 3.2. MgB2 cable specifications for contact resistance measurements. 

Sample  

Name 
Powder batch 

Twist pitch/length, 

 cm 
Insulation method 

Heat 

treatment 

MOT01 4.445/11.5 
Motor oil (Mobil #1 

SAE30) 

GEO02 5.08/17.0 
Gear oil (Pennzoil, 

SAE80W-90GLS) 

NOS03 4.445/12.5 No insulation 

PAT04 4.445/14.5 Paint (POR15) 

GEO05 

MgB2, #205 

(Fe/monel) 

4.445/13.5 
Gear oil (Pennzoil, 

SAE80W-90GLS) 

750 °C 

30 min. 

FMO06 5.08/16.0 

FMO07 3.81/16.0 

FMO08 

MgB2, #152 

(Fe/monel) 
2.54/16.0 

NOF09 5.08/16.0 

NOF10 3.81/16.0 

NOF11 

MgB2, #270 

(No Fe/monel) 
2.54/16.0 

CUC12 5.08/16.0 

CUC13 3.81/16.0 

CUC14 

MgB2 + SiC (10%), 

#256A, 

(Fe/CuNi) 2.54/16.0 

No insulation 
700 °C 

15 min. 
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Fig. 3.3. 1.7 T VSM. 

Fig. 3.4. 9 T VSM, head, mounting, and dewar. 
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Fig. 3.5. Pick-up coil for the 9 T VSM. 

6″ 

0.45″ 1.445″ 

2.356″ 

Temperature sensor 
 

Connection for  
temperature sensor 
 

Connection for upper coil 
 

Connection for bottom coil 

Depth of groove 0.1″ 
 

Dimension of pick-up coil 

Number of turn for 
upper/bottom coil 

3000 

Diameter of copper 
wire for coils 

0.08mm 

Inner diameter of the 
coils 1.729″ 

Inner diameter of 
coil former 1.529″ 

Outer diameter of 
coil former 1.929″ 
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 Fig. 3.7. Length dependence of magnetic moment of sample coil.  

Fig. 3.6. Location of the maximum sensing point of the sample coil.  
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Fig. 3.9. Impedance at different frequencies using several values of capacitance. 

Fig. 3.8. Schematic of sample coil. Only the sample length Ls is changed. The 
number of turns and the width of sample coil are constant for all sample coils.

Ls 
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Fig. 3.10. Magnetic field distribution inside the external magnet when 
field is maximum and when the field is decreasing toward zero. 
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Fig. 3.12. Calibration of the pick-up coil method  
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Pick-up coil & cancel coil 

Shape Square cylinder type 

Dimension 54 × 30 × 1.27 mm 

Number of turn 205 

Number of layer 1 

Wire diameter 100  µm 

Inductance  ≈ 0.980 mH 

Magnetic field measuring coil 

Shape Cylinder type 

Diameter 16.0 mm 

Height 30.0 mm 

Number of turn 721 

Number of layer 3 

Wire diameter 100 µm 

Inductance 3.660 mH 

Magnet for external magnetic field 

Shape Cylinder type 

Inner diameter 88.9 mm 

Outer diameter 11.07 mm 

Clear bore 76.2 mm 

Height 186.0 mm 

Number of turn 1510 

Wire diameter 1.0 mm 

Inductance 90 mH 

Resistance 9.9 Ω at 298 K 

Table 3.3. Specification of various coils in the pick-up coil system. 
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CHCAPTER 4 
 

 
 

 
RESULTS AND DISCUSSION 

 
 
 
 

4.1 Numerical results 

 In order to describe the current distribution within superconducting composites 

and obtain the AC loss from it, the sample is divided into several blocks which have 

different conductivity tensors. Three dimensional block model is developed to describe 

the AC loss of various geometry conductors; specially rectangular and cylindrical shapes 

with and without resistive core. This model can be applied to both strands and cables. So 

far, an anisotropic continuum model has typically been used to describe the strands, and a 

discrete model has typically been used to describe the cables. However, we will compare 

these approaches for composites of both types. 

 A four-block model based on a numerical anisotropic continuum model (in this 

case a numerical approach) can be used to calculate the eddy current coupling loss of the 

composites with a complicate geometry which has not yet been solved with the usual 

analytic models above.  
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4.1.1 Rectangular geometry conductor without a core 

 First, the dependence of the eddy current couplings loss in a rectangular 

superconducting composites on the twist pitch, Lp, is presented for four-block 

modelwithout a core. It is proportional to the square of twist pitch, Lp, as should be 

expected from comparisons with analytic calculations based on continuum models [1, 2]. 

But, in the network model for a Rutherford cable, the dependence of eddy current 

coupling loss, Pe, on twist pitch, Lp initially appears to be just linear[3-5]. However, these 

two descriptions are really comparable. (For a further discussion of two points, see 

appendix A.) In the four-block model in this numerical calculation, the effective 

resistivity is defined in each of four blocks, as described in Table 2.2. We note that the 

eddy current loss is proportional to the square of the twist pitch, Lp as in Fig. 4.1. With 

increasing mesh, the data approach the theoretically expected line, but this asymptotic 

approach shows a saturation as the number of tetrahedron approaches 53,000. 

 Next, the aspect ratio (width/thickness) dependence of eddy current coupling loss 

of the composite is presented for a rectangular geometry without a core. Usually, the AC 

loss of HTSC (High temperature superconducting composites) has been modeled using 

ellipsoidal cross section geometries, and the aspect ratio of such a system is defined as 

(length of long axis, a/ length of short axis, b) of the ellipsoid. The eddy current coupling 

loss, Pe, depends on the square of the sample aspect ratio in case of twisted samples, but 

it shows just linear behavior in case of untwisted samples[6-9].  

 The geometry of various samples with different aspect ratios is shown in Fig. 4.2. 

The results from the four-block model (numerically calculated in this case) are shown in 

Fig. 4.3. We can see the square dependence of eddy current coupling loss, Pe, on the 
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sample aspect ratio, (a/b). Results are normalized to the loss value of the widest width 

sample, w = 15 mm and the square of the twist pitch The reason for aspect ratio 

dependence of eddy current coupling loss, Pe, is presence of the demagnetizing field 

around the sample[10]. The demagnetizing field is again in this case present, due to the 

induced current within the sample. When induced current flows inside the sample, it 

induces the magnetizing field around the sample that modifies the applied magnetic field 

around the sample[11].  

 

4.1.2 Rectangular geometry conductor with a core 

To reduce loss, a core region between the upper layer and lower layer can be 

inserted as shown in Fig. 2.1. If we change the thickness and the conductivity of the core 

region, we can calculate the eddy current coupling loss for rectangular geometry 

conductors with resistive cores[12]. The current distribution in a sample without or with 

core is shown in Fig. 4.4. As core resistivity increases, the transverse current across the 

core is greatly reduced resulting in a reduction of eddy current coupling loss. We can 

change the core thickness as well as its resistivity. The geometry of various core models 

are shown in Fig. 4.5. In Fig. 4.6, the thickness of the core is varied from 0.4 mm to 1.5 

mm and the conductivity is two orders of magnitude reduced as compared to the z-axis 

conductivity of the rest of the conductor in order to mimic the effect of a resistive core 

for a Rutherford cable[13, 14] or for a Bi based strand[15-18]. The values listed alongside 

the thicknesses are the loss values for twist pitch, Lp = 51.96 mm. As the core thickness 

increases and the conductivity decreases (Fig. 4.6. (b)), the eddy current coupling loss Pe 

decreases. 
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Loss calculations were made as the width of the core resistivity (σ = 104 S/m) was 

varied from zero to 12.5 mm, and the geometry of various core width models are shown 

in Fig. 4.7 and the results of these are displayed in Fig. 4.8. Qe decreases as the resistive 

core width increases. Using the following expression from Carr[7], 
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and the calculated value of Pe, for f = 1 Hz, B0 = 1.7 T, Lp = 30 mm, and Vs = 1.8 x 10-

5m
3
, we can obtain the effective transverse conductivity, σ⊥. These results are shown in 

Fig. 4.9. As the thickness of the core is varied while keeping ρc tc = 10-7 Ωm2 constant, 

the AC loss occurring in the core is as shown in Fig. 4.10, where we see the loss is lower 

for thicker cores (the core-only loss is of course the same by definition).  

 Loss calculations were then made as the conductivity of core and the conductivity 

in z-direction of four-block model was varied from 102 S/m to 106 S/m. The AC loss with 

respect to this conductivity variation is shown in Fig. 4.11. In the case of the four-block 

model, the loss is linearly dependent on the z-direction conductivity. But, in the case of 

the core model, the loss deviates from this linear behavior when the conductivity of core 

is less than 104 S/m and more than 3 × 105 S/m. At very low core conductivities, current 

path redistribution seems to be occurring, but since only R⊥ associated losses were 

calculated, the reported values are underestimated of the loss for the core model in this 

region. On the other hand at high conductivities, the core conductivity is approaching that 

of the surrounding regions, a violation of the core model. 
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 An outer sheath with thickness 1 mm and an isotropic conductivity of 106 S/m 

was added to one of the core models. The loss in the outer sheath was calculated in the x, 

y and z directions, while the loss inside the core was calculated using z direction current 

only, as before. The effect of outer sheath on loss is less than 10%. The geometry and the 

resulting losses are shown in Fig. 4.12. 

To compare the numerical results above to those of experiments, the loss value 

should be multiplied by a conversion factor, G. Let 
f

P
GQGQ e

eeriment ⋅=⋅=exp  where Pe in 

this work has been loss in W/m3, Qe is loss per cycle, and G is a conversion factor scaling 

the loss from values at parameter chosen for convenience in numerical calculations to 

those relevant to experimental situations. In particular, the conductivity of copper at 4.2 K 

is 6.45 × 109 S/m (based on a RRR = 100 and a copper resistivity at 273 K of 1.55 × 10-8 

Ωm[19]). Lp is 115 mm, t is 1.9 mm and the magnetic field sweep amplitude is 0.4 T 

from[14]. In this calculation, transverse conductivity is 106 S/m, Lp is chosen as 51.96 mm, t 

is 4 mm, frequency is 1 Hz, and the magnetic field sweep amplitude is 1.7 T. The low 

conductivity value is chosen since the maximum available conductivity value which gives a 

sound current distribution is 1012 S/m. Q is calculated using                                                                                                                        
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with this conversion factor, G, the sinusoidal average loss value coming from calculation 

is 3.28 × 106 J/m3 at 0.005 Hz. Experimentally, loss values for Cu-surface contact cables 

varies greatly[14]. The value of these calculation are similar to the highest loss 

measurements from experiments, namely, uncored LHC (Large hadron collider)-class 
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cables cured for 2 hours at 250 °C from[20], which is 2.925 × 106 J/m3. The difference 

between these values is 10.8%. This loss agreement of experiment with the highest loss 

experimental results makes sense because in our FEM calculation there are no thin oxide 

layers which would make the contact resistance high. Copper oxide layer on the strands 

of Rutherford cables is unstable and it dissolved completely in the above uncored LHC-

class cables given aggressive heat treatments above 250 °C, 75 Mpa[21, 22]. 

 

4.1.3 Cylindrical geometry conductor  

We can define a conductivity tensor in each block of a cylindrical model to 

simulate the eddy current coupling loss of a twisted round strand, or a twisted cable. The 

conductivity tensor is different point by point and is defined by two twist angles of the 

principle axis. One is γ for the twist angle of principle axis of σzz relative to the z-axis and 

the other is α for the twist angle of the principle axis of σxx relative to the x-axis. The 

details of the definition of the conductivity tensor are given in Fig. 4.13. The value of σzz 

is 1012 S/m and the values of σxx and σyy are 106 S/m. The current distribution of this 

model is shown in Fig. 4.14 and the results of Pe calculation are shown in Fig. 4.15. 

When Pe was calculated, only current components in x and y direction were considered to 

cause eddy current coupling loss. All data were normalized to Pe at Lp = 27.713 mm. Fig. 

4.15 shows a square dependence of Pe on the twist pitch Lp, which is expected from 

anisotropic continuum theory. For comparison, Pe at Lp = 27.713 mm is 1283.2 Watts/m3 

and Pe from the analytical expression by Carr[1] is 1109.8 Watts/m3 as given by,  
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The difference between these values from four-block model and above expression is 

about 13.5%.  

We can also insert a core region into this cylindrical four-block model with a core 

region conductivity of 106 S/m. We can then change the radius of core region and 

calculate the loss in the core region only. The results of this as well as a comparison to 

the cylindrical four-block model and the analytical expression of the above are shown in 

Fig. 4.16 for the case of Lp = 16.0 mm. The extrapolation of Pe of core model to a value 

at the core radius of 4 mm which is the radius of four-block model has the value of 

319.66 Watts/m3 and the Pe value from the cylindrical four-block model is 353.16 

Watts/m3 with the value from the analytical expression above is 369.92 Watts/m3.  

 

4.1.4 Seven-strand model 

 As an alternative to the cylindrical four-block model, a seven-strand model can be 

used to simulate the eddy current coupling loss in seven strand MgB2 cables. We have to 

divide our model to represent each region with different conductivity as shown in Fig. 

4.17. The superconducting core region has a conductivity of 1012 S/m and the matrix 

region has a conductivity of 106 S/m. In these regions, σ is isotropic. The interstrand 

region has a transverse conductivity 104 S/m and the inner strand region has a transverse 

conductivity 106 S/m. As these regions are anisotropic, we need to define the 

conductivity tensor as in 4.1.3 section. When the magnetic field is applied perpendicular 

to the sample, the current distribution should be as shown in Fig. 4.18. The eddy current 

coupling loss is caused by the transverse current (thick black arrow) and not by the 

current along the superconducting filament inside each strand (gray arrow). The 
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analytical calculation of the interstrand eddy current coupling loss in seven strand cable is 

given in Appendix B. 

The current distribution of a seven-strand model is shown in Fig. 4.19. In Fig. 

4.19, the current inside the dotted line is the transverse current for the eddy current 

coupling loss and the other currents are along the superconducting filaments, generating 

no eddy current coupling loss. We can see the transverse current only in the interstrand 

region (inside dotted line), since in the numerical results, the current along the 

superconducting filamentary direction are also shown and projected into x-y plane. The 

results of interstrand eddy current coupling loss Pe, are shown in Fig. 4.20. The value of 

Pe for seven strand cable with the transverse conductivity of 104 S/m in the interstrand 

region is 0.95 % of loss value of the cylindrical four-block model with same radius 

(4mm). We can see the eddy current coupling loss is greatly reduced. However, the twist 

pitch dependence of Pe also follows the square of Lp. Here, the transverse current in the 

interstrand and matrix region are considered and the current in the inner strand region and 

the superconducting filament region are excluded since we are calculating the eddy 

current coupling loss between strands in seven strand MgB2 cables. 

 

4.2 Experimental results 

4.2.1 Magnetic shielding in MgB2 strands 

 To get a high critical current density, Jc, a sintering process is needed for MgB2 

wires. Stable metal sheaths should be used that does not react with Mg up to 900 °C. So 

far, the best candidate for this is Fe[23]. Since Fe is a ferromagnetic material, it will be 
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necessary to include its losses in our calculations for twisted strands. It will turn out that 

under certain circumstances, the Fe can also reduce the losses. 

 A round strand 1.5 cm long and with a 0.77 mm radius was measured in the 1.7 T 

VSM. It had an Fe outer sheath. The M-H loops for this sample are shown in Fig. 4.21. In 

this figure, “No Fe sheath”  means that we have subtracted the M-H loop measured at 40K 

(above the critical temperature of MgB2). If we compare this M-H loop of “Fe sheath”  

sample to the M-H loop of bulk MgB2 (Fig. 4. 22), we can see that below 0.2 T, the M-H 

loop is suppressed, such that the curve had no area. Since an M-H loop with smaller area 

is obtained, the hysteresis loss of this strand is reduced. This effect is caused by the 

magnetic shielding of the Fe matrix as explained by “  the Pseudo Meissner Effect ” [24]. 

This magnetic shielding effect is shown at various temperatures in Fig. 4.23. The M-H 

loop size decreases, as the temperature is increased towards Tc. Above Tc, only the signal 

from Fe sheath can be seen. 

 M-H loops of MgB2 strands with different heat treatments and powder 

compositions were measured at 4.2 K using the 9 T VSM. In Fig. 4.24, we can also see 

the magnetic shielding effect at low applied fields. Above 6 T, the magnetic Jc are zero as 

can be seen from the ∆M values of the M-H loops. Adding carbon and SiC to MgB2 

powder increases the magnetic Jc of the composites[25-27]. The saturation magnetization 

of each MgB2 strand can be seen at high magnetic fields. It comes from the Fe sheath or 

the Fe and monel sheath and shows that the saturation is different for each samples 

because the effective thickness of the ferromagnetic layer is different. Not only the 

saturation magnetization, but the magnetic shielding effect also depends on the thickness 

of Fe layer. The magnetic shielding effect is more severe for the samples from the 
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University of Wollongong than those from Hyper Tech Research, as shown in Fig 4.21 

and Fig. 4.23. Hysteresis loss is reduced by the magnetic shielding of the Fe, but its 

effects on the eddy current loss still need to be investigated (but see below). 

 It is important to be careful when determining how much the hysteresis loss is 

reduced by this magnetic shielding, since there are two kinds of magnetic shielding 

induced by the Fe sheath. One is the magnetic shielding of the applied magnetic field to 

the superconducting filaments (Outside to Inside shielding), another is the magnetic 

shielding of the magnetic moment of superconducting filaments from the pick-up coil 

(Inside to Outside shielding)[28, 29]. The “apparent loss”  with these two forms of 

magnetic shielding is always less than the “real loss”  which the composite really exhibits. 

 Numerical calculation using FEM (Finite Element Method) was performed to 

differentiate these two kinds of magnetic shielding. Using FEMLAB FEM code, a two 

dimensional simulation was performed. To calculate a Bean-current like magnetization, 

we first define a positive critical current density in one half of the superconducting region 

and a negative critical current density in the other half of the superconducting region. The 

polarity of this current is reversed when shielding branch of M-H loop changes to a 

trapping branch and vice versa. The magnitude of the critical current density in this 

region can be assumed to follow the Kim-like model, decreasing with the magnetic field. 

The intrinsic magnetic permeability of the Fe matrix should be used when there is 

magnetic shielding and the magnetic permeability of Fe should be set to unity when there 

is no magnetic shielding effect.  

If we apply a magnetic field, H0, we can get the B from the numerical results in 

each geometry, and from ))1(( 00 MDHB −+= µ , we can calculate the magnetization M 
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in each geometry. D is demagnetizing factor for this two dimensional geometry and can 

be calculated using permeability values[28, 29]. We must use only the B component 

along the applied field direction. 

When we calculate the “real loss”  that is the loss without the inside to outside 

shielding, first, the applied magnetic field, H* of superconducting region need to be 

calculated for the outside to inside shielding. This can be calculated putting the intrinsic 

permeability of Fe into sheath region. Once the magnetic field, H* is calculated, we 

change the permeability of Fe to a unity to remove the inside to outside shielding. By 

applying the same magnitude of the magnetic field as H*, we can obtain B in the 

superconducting area without the inside to outside shielding. Then, we calculate M from 

B and H* with demagnetizing factor. This M should be normalized to whole composite 

volume. 

In Fig. 4.25, the M-H loops for the “real loss” , the “apparent loss”  and the loss 

without any magnetic shielding are shown.  If we calculate the loss values with respect to 

the applied magnetic field by calculating area of the M-H loops, the “real loss”  is always 

greater than the “apparent loss”  but is always smaller than the loss without any magnetic 

shielding (Fig. 4.26). 

 

4.2.2 AC loss measurement by pick-up coil method  

AC losses of seven-strand MgB2 cables are measured at 4.2 K by the pick-up coil 

method as discussed in Chapter 3. The external magnet and the measuring coil system 

containing a sample are located inside the liquid He dewar for 4.2 K measurement. The 

results are displayed in Fig. 4. 27-29. There are almost no hysteresis loss and no eddy 
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current coupling loss for these seven strand MgB2 cables in this low magnetic field even 

though the applied frequency is above 50 Hz. We expected low losses, based on the 

values predicted by contact resistance measurements. However, this loss is even smaller 

than we expected. 

The reason for low hysteresis loss is the magnetic shielding effect by Fe layer 

surrounding superconducting MgB2 filaments. To get some hysteretic signal from 

superconducting filament, the applied magnetic field to MgB2 strand should be larger 

than 0.2 T. But, at present, the output of AC power supply is limited to 0.14 T and even 

this maximum magnetic field cannot be applied and only 0.04 T is available due to the 

severe evaporation of liquid He. 

One of the reasons for this extremely low loss besides the magnetic shielding 

effect and high contact resistance can be the applied magnetic field is below the 

penetration field of the composite. The penetration field is given by Hp = (2/π ) r0Jc. If 

we input, r0 = 0.2 mm Jc = 100 A /( π r0
2), then Hp is about 0.127 T which is well above 

the applied magnetic field, 0.04 T in this pick-up coil method. In this situation, the 

permeability of the composite is not unity and the composite is still diamagnetic material. 

Then, according to Campbell[10], the eddy current coupling loss is greatly reduced when 

the superconducting filaments is in diamagnetic state.  

The low eddy current loss is mainly due to the very high contact resistance 

between the strands. From the expression (1-3) and (4-1), the eddy current coupling loss 

is inversely proportional to the effective resistivity of the superconducting composite. If 

we convert the contact resistance to effective resistivity using the expression in Appendix 
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B, the effective resistivity is about 104 times higher compared to that of Bi2223/Ag strand 

in 4.2 K even in the case of no insulated MgB2 cables. 

Another possible reason for almost zero AC loss is the current re-distribution 

when there is high permeability material as Fe. However, how different it is from the case 

where there is no Fe layer and whether this will reduce the eddy current coupling loss or 

not, are still need to be investigated in future study. 

The low AC loss in this condition is valuable for the application such as power 

transfer line and transformer where the magnetic field is low but the frequency is high. 

However, the areas of M-H loops are too small to calculate the loss from it and compare 

to the results from the seven-strand model and the analytical model in Appendix B. Those 

models expect some eddy current loss anyway. 

 

4.2.3 AC loss from measuring of contact resistance of MgB2 seven strand cable 

 AC loss measurement at 4.2 K by the pick-up coil method is non-trivial. The 

measurement of eddy current coupling loss by VSM is also difficult because of the 

limited frequency range (typically lower than (1/120) Hz). Therefore, we need an 

alternative to estimate the eddy current coupling loss of superconducting composites in a 

simple way. 

The eddy current coupling loss in cables is dominated by the contact resistance 

between the strands inside the cable[13, 14]. If, for example, the contact resistance 

between the upper layer and the lower layer of the Rutherford cables is known, the eddy 

current coupling loss of the cable can be determined by the network model[5]. Similar 
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models are available for round CIC (Cable in conduit) cases, [30-33]. However, in seven 

strand MgB2 cables, the sample geometry is different from the above examples.  

Below we will measure the contact resistance of some seven strand MgB2 cables. 

Experimentally, measured contact resistances results from many possible connection 

paths between strands. For example, the contact resistance between strand 1 and strand 2 

comes from the contact of strand 1 and strand 2 and other contacts between strands. (See 

Appendix D). The contact resistance, Rc, between any pairs of strands can be determined 

after measuring experimentally four contact resistances, R1 (between strands 1 and 2), R2 

(between strands 1 and 3), R3 (between strand 1 and 4) and R4 (between strand 1 and 5) as 

follows  
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  (4-3). 

r is the radius of one strand, Ls is the sample length, Lp is the twist pitch, Ne is the number 

of eddy current paths in the volume of one twist pitch. (refer to Appendices A and B) 

Four contact resistances for each MgB2 cable were measured as explained in 

Chapter 3. The results are shown in Fig. 4. 30. When there is an insulation layer between 

strands, the contact resistance is two orders higher than the contact resistance without an 

insulation layer. Motor oil, gear oil, and high temperature paint coatings were used as 

insulation methods for these cables. We can see that the high temperature painting used 
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in PAT04 did not provide any insulation effect. The possible reason for this was that the 

paint did not adhere to the individual strand during twisting and heat treatment. Since the 

etching procedure before applying the paint removed the natural oxide on the surface, the 

contact resistance is even lower than that of no insulation at all.  

The effect of twist pitch on the contact resistance is shown in Fig. 4.31. There is 

almost no dependence of the twist pitch on the contact resistance. 

 

4.2.4 Microscopic analysis of contact region 

 Optical microscopy of one of the MgB2 cables (MOT01) is shown in Fig. 4.32. 

The uncontacted region as indicated in the Fig. 4.32 can cause some distribution of the 

contact resistance values. After 5 second etching with dilute hydrochloric acid, we can 

identify the Fe layer surrounding the MgB2 superconducting filaments. 

The average contact resistance between strands over the cable length, which is an 

important factor to the eddy current coupling loss, is a kind of summation of the local 

contact resistance between the strands. In section 4.2.3, the average contact resistance 

over the cable length not the local contact resistance at some point was measured. This 

local contact resistance can be affected by several factors. There can be the uncontacted 

regions as above, the carbonizing effect of decomposed SAE30 oil, and the existence of a 

native oxide layer on the metal sheath. At 750 °C, carbon can be dissolved into Ni about 

0.4 At. % and 0.008 At. % into Cu[34]. There is no ternary phase diagram for Ni-Cu-C 

system. The oxide layer on the surface of the strands can be affected by the insulating 

methods and can be the natural oxide itself on the metal surface in case of the sample 

without any surface treatment. The sample insulated with SAE30 oil (MOT01) and the 



 70

sample without any surface treatment (NOS03) was analyzed with SEM and EDS. The 

interface between strands of NOS03 is relatively clear compared to that of MOT01 as 

shown Fig. 4.33. This may be due to the decomposition of the SAE30 oil applied to the 

strand surface after heat treatment.  

To see if there is any carbonizing effect from SAE30 oil to the strand matrix 

which is nickel alloy, EDS analysis was performed on the both sample. The composition 

of carbon is not so much different on both samples though the content of carbon in 

MOT01 is slightly higher than that of NOS03. But, the contamination of carbon can 

occur easily in standard SEM sample preparation and the carbon content is decreasing 

toward the interface from the superconducting filament except near the interface where 

the carbon content is very high for both samples. Therefore, the carbonizing effect by 

SAE30 oil addition is not clear by EDS analysis, though the averaged contact resistance 

of MOT01 is about 20 times higher than that of NOS03.   

To check any oxide layer on the surface of strands, we found the clean surface 

without contamination of impurity such as Si, S, C from mounting epoxy and diamond 

paste as shown Fig. 4.34. Two points in each sample are analyzed by EDS. One is for the 

free surface and another is for the inside of matrix. The composition of oxygen is slightly 

higher in case of MOT01. But, the effect of applying SAE30 oil on the natural oxide is 

not so clear from this composition difference.  

The primary object of the Fe layer surrounding superconducting filaments is 

preventing a reaction between Mg in superconducting filament and Cu in matrix 

materials. If there is no Fe layer, the reaction between Mg, Cu and Ni occurs, forming 

intermetallic compounds, such as Cu2Mg and CuMg2. Reaction between Mg and Ni also 
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occurs, froming Mg2Ni and MgNi2[35]. BSE image and EDS analysis of NOF11 without 

Fe layer between filament and matrix shown in Fig. 4.35 indicate the existence these 

reactions and we can clearly see the reaction layer between filament and matrix. EDS 

analysis was performed at nine locations by point by point. Three points (# 1-3) are 

within an MgB2 filamentary region, next three points belong to reaction layer, and 

remaining three points are within monel matrix. Secondary electrons were gathered at 20 

kV during the lapsed time 40 sec at average (at least 1000 count number), until pick 

heights of each elements signal did not change to insure enough and same condition for 

each analysis. 

Even the reaction between Fe and Ni seems to occur at 750 °C and the reaction 

layer can be seen as shown in Fig. 4.36. EDS analysis was performed by point by point as 

same way as NOF11 sample. #1 point is within an MgB2 filament, #2 and #3 points are 

within Fe layer, # 5-7 points are within matrix. #4 point belongs to “reaction layer”  in 

case of PAT04 sample, but there is not the reaction layer in case of CUC14 sample (no #4 

point for CUC 14 sample). EDS analysis shows that Fe composition does not fall to the 

level same as that of matrix. The reaction layer can be seen in PAT04 with monel matrix, 

but it is difficult to find in CUC14 with Cu-Ni alloy with high Cu composition about 85 

At. % Cu. This is expected from binary phase diagram of Ni-Fe and Cu-Fe[35]. The 

solubility of Cu in Fe, vice versa, is about 1 At. % at 750 °C, but in case of Ni-Fe system, 

the solubility of Ni to Fe is about 4 At. % and FeNi3 intermetallic compound and (γFe, 

Ni) alloy can be formed in wide composition range. 

The reaction between elements from filaments and elements from matrix does not 

change the contact resistance between strands directly. But, it changes the overall 
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transverse effective resistivity of superconducting composites, that is Rc effective ≈ Rc strand + 

Rc reaction layer. This increased effective resistance eventually reduces the eddy current 

coupling loss. However, the superconducting properties of filaments such as Tc and Jc 

must be considered more fundamentally than the reduction of eddy current coupling loss 

of the composites. 

 

4.2.5 Comparison of AC loss calculation and AC loss measurement 

 From the measured contact resistance values, we can get the value of Rc from 

expression (4-2). Using this Rc value and expression (4-3), we also can get the AC loss 

(eddy current coupling loss) of seven strand MgB2 cables. For example, the measured 

contact resistance Rc of an MgB2 cable(MOT01) insulated with SAE30 oil is 0.439 Ω. 

The Rc of eddy current path then, is 0.439 × (Ls/2r)= 45.88 Ω. Here, Ls is sample length, 

and r is radius of a strand. Using (4-3), the eddy current coupling loss at a frequency of 1 

Hz and a magnetic field of 1.7 T is 4.44×10-2 Watts/m3. The calculated AC loss value 

from numerical simulation is 5.42 Watts/ m3. This loss value is calculated inside the 

interstrand region only using the current along the x-direction that is the transverse 

direction in the seven strand cable geometry. We also considered the current along the z- 

direction only the transverse direction in the in four-block model and core model for the 

Rutherford cables.  

To compare these loss values, we have to use a conversion factor G. Here, the 

frequency and the magnetic field are assumed the same as 1 Hz and 1.7 T for both cases 

and G is defined as follows. 
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πρ =⊥ . (Refer to Appendix A). Then, using this G, the 

AC loss from numerical calculation is converted to 5.42 × 9.35 × 10-3 = 5.07 × 10-2 

Watts/m3.  The difference between AC loss using measured Rc values and expression (4-

3) and the AC loss from numerical calculation is about 12.5 %. This difference is due to 

the loss calculation using all the current inside the interstrand region including the current 

along the strands that has no resistive component in real application. In Fig. 4.17 and Fig. 

4.19, we have to use the only the transverse current causing the eddy current loss not the 

current along superconducting filaments. In numerical calculation, by definition of 

anisotropic conductivity, the current that flows along the strands inside the interstrand 

region has resistive component resulting eddy current coupling loss. 

 The second example is for the MgB2 cable with high temperature painting 

(PAT04). This cable has two orders lower value of measured Rc, which is 2.903 × 10-3 Ω, 

since there is no insulation layer. Rc of the eddy current path is 0.4592 Ω. Then, the AC 

loss using (4-3) is 4.44 Watts/m3. This time G is 1.12 and the AC loss from numerical 

calculation is converted to 5.42 × 1.12 = 6.07 Watts/m3. The difference between AC loss 

using measured Rc values and expression (4-3) and the AC loss from numerical 

calculation is about 27 %. 

 The eddy current coupling loss predicted by numerical calculation can be 

compared to the loss from expression (4-3) using the value of Rc in more wide range of 
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frequencies. The applied magnetic field is assumed 0.14 T, and in each frequency, the 

conversion factor G was calculated. After multiplying this G to the numerical result, the 

comparison for the sample insulated with SAE30 oil (sample #1) is given in Fig. 4.38, 

and that of the sample painted with high temperature paint (sample #3) is given in Fig. 

4.39. According to the anisotropic continuum theory [1], there is a frequency above 

which saturation occurs and the whole filamentary array is coupled together. To get a 

general frequency dependence of eddy current loss, the factor of ))/(1(1 2
1ff+  should 

be multiplied to the loss in linear dependence region. Here, f1 is the critical frequency the 

saturation occurs and 2
0

1

4

pL
f

⊥

=
σµ

π
.  Since the effective resistivities of both sample is 

high not to allow the saturation occur below 200 Hz, the general frequency dependence 

of eddy current loss is identical to the linear frequency dependence as in Fig. 4.37 and 

Fig. 4.38. 



 75

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 4.1. Twist pitch dependence of the eddy current coupling loss in the four-block 

model. 
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Fig. 4.2. Four-block models with various aspect ratios. 
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Fig. 4.3. Aspect ratio dependence of the eddy current coupling loss in four-
block model. The loss is normalized to (a/b)2 =14. 
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Fig. 4.4. Current distribution in block model with a resistive core. (a) shows three 
dimensional views of currents. Second view of (a) shows just a transverse current 
across the core. (b) core with conductivity 106 S/m (c) core with conductivity 104 S/m. 
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Fig. 4.5. Geometry of the block model with different core thickness.  



 80

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.6. Normalized loss vs Lp for (a) various core thickness, and 
(b) various core conductivities. 
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Fig. 4.7. Geometry of various core width-block models. 
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Fig. 4.8. Resistive core width dependence of Pe. 
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               Fig. 4.10. Pe vs tc keeping ρctc = 10-7 Ωm2. 

Fig. 4.11. Pe vs core conductivity for the four-block model and block 
model with resistive core. 
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Fig. 4.12. Effect of an outer sheath on Pe. 

1.0 mm1.25 mm

1.0 mm

1.0 mm1.25 mm

No sheath

1 mm sheath

1.0 mm1.25 mm

1.0 mm

1.0 mm1.25 mm

No sheath

1 mm sheath

Lp /Lp0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P
e 
/P

e0

0

1

2

3

4

5

6

7

8

9
σ = 106 S/m, with no sheath
σ = 106 S/m, with 1 mm thickness outer sheath
ohmic loss within sheath

1.90x104 Watts/m 3

2.05x104 Watts/m 3

0.21x104 Watts/m 3



 85

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.13. Conductivity tensor definition for a cylindrical four-block model. 
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Fig. 4.14. Current distribution for the cylindrical four-block model. Projection to 
the cross section of the sample. 
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Fig. 4.15. Pe vs. Lp for the cylindrical four-block model. 

Fig. 4.16. Pe vs. core radius and a comparison to the analytic model. 

Core radius, mm

1.5 2.0 2.5 3.0 3.5 4.0 4.5

P
e, 

[W
at

ts
/m

3 ]

50

100

150

200

250

300

350

400

Core model
Four block model
Analytic model by Carr

Lp /Lp0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

P
e 
/P

e0

0

2

4

6

8

10

Cylindrical Four block model



 88

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

No eddy current region 
 
Normal metal 
 
Interstrand region 
 
Inner stand region 
 
Superconducting filament 

Fig. 4.17. Schematic for a simple model of a seven-strand cable. White 
region (No eddy current region) is excluded from the numerical simulation. 
Normal metal and the superconducting filament regions are isotropic. The 
remaining interstrand region and inner strand region are further divided 
into four blocks to simulate the twisting effect. 

Fig. 4.18 Current distribution in a seven-strand cable.
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Fig. 4.19. Current distribution for the seven-strand cable model. Projection to 
the cross section of the sample. The current inside the dotted line is the 
transverse current for eddy current coupling loss, other currents are along the 
superconducting filament. 
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Fig. 4.20. Eddy current coupling loss of a seven-strand model with respect to 
twist pitch. Only the transverse current in interstrand and matrix region are 
considered. 
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Fig. 4.21. M-H loops of an MgB2 strand with an Fe matrix. No Fe sheath M-H
loop is obtained by subtracting 40 K signal from the as measured signal.  
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Fig. 4.22. M-H loops of a bulk MgB2 superconductor with no Fe matrix at 
various temperatures. 

Fig. 4.23. Magnetic shielding effect at various temperatures. 
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Fig. 4.25. M-H loops generated by numerical calculation. 

Fig. 4.24. M-H loops of MgB2/Fe strands measured at 4.2 K in 9 T VSM. 
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Fig. 4.26. AC loss (hysteresis loss) derived from M-H loops. The 
graph below shows the Real loss with respect H* . H*  is the field the 
superconducting filaments experience inside the Fe matrix. 
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Fig. 4.27. M-H loops of SAE30 oil coated sample at 4.2 K by the pick-up coil method.

 Fig. 4.28. M-H loops of paint coated sample at 4.2 K by pick-up the coil method.
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Fig. 4.29. M-H loops of uncoated sample with no Fe layer at 4.2 K 
by the pick-up coil method. 
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Fig. 4.30. Contact resistance in MgB2 cables at 4.2 K with various insulating layers. 

Fig. 4.31. Effect of twist pitch on the contact resistance of MgB2 cables at 4.2 K .
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(b)  

(a)  

Fig. 4.32. Optical microscopy of MgB2 cable insulated using SAE30 oil. (a) before 
etching Fe layer surrounding MgB2 superconducting filaments. (b) after etching Fe 
layer surrounding MgB2 superconducting filaments. 

3.0 mm 

Uncontacted region. 
Possible reason of 
high resistance 



 99

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Sample (NOS03) without surface 
insulation 

Surface coated sample (MOT01) with motor oil 

Fig. 4.33. SEM images of the interface between stands of an MgB2 

cable. 
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Surface coated sample (MOT01) with motor oil. 
Oxygen content at surface: 5.10 At. % 
Oxygen content inside matrix: 1.23 At. % 

Sample (NOS03) without insulation coating. 
Oxygen content at surface: 3.60 At. % 
Oxygen content inside matrix: 1.87 At. % 
 
 
Fig. 4.34. EDS analysis of oxygen of an MgB2 cable. 
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Fig. 4.35. BSE image and EDS analysis of sample without Fe layer. 
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Fig. 4.36. EDS analysis of Fe in an MgB2 cable. PAT04 shows 
some reaction between Fe and monel. However, no reaction can 
be found in CUC14 that has higher Cu composition. #4 location is 
the interface indicated in BSE picture. 
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Fig. 4.37. Eddy current coupling loss of MOT01 at 4.2 K. 

Fig. 4.38. Eddy current coupling loss of PAT04 at 4.2 K. 
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CHAPTER 5 
 
 
 
 

SUMMARY AND CONCLUSIONS 
 
 
 

 The AC loss of superconducting composites with rectangular and round cross 

sections, especially the eddy current coupling loss component are has been calculated by 

discrete and continuous models. The eddy current loss of a rectangular cross section 

composite was successfully calculated by a simple four or five-block model based on an 

anisotropic continuum approach rather than a discrete approach (network model, lumped 

model) that has been used for the Rutherford cables (a type of rectangular cross section 

composite) so far. Block models with a different anisotropic effective resistivity in each 

block were used to describe the dependence of eddy current coupling loss of rectangular 

cross section composites on twist pitch, aspect ratio, core resistivity, core thickness, core 

width, and outer sheath. The eddy current coupling loss increases with the square of the 

twist pitch and the aspect ratio of the composite as predicted by both the anisotropic 

continuum model and the discrete model. Moreover, this block model successfully 

calculates the dependences of core thickness, width, and outer sheath, which have not 

been described by these existing two models. As the core thickness, width, and the core 

resistivity increases, the eddy current loss linearly decreases. There is little effect of the



 108

outer sheath on the eddy current coupling loss although a normal eddy current loss exists 

within outer sheath. 

In the case of twisted round composites, the eddy current loss is also calculated 

using a block model and then compared with the existing analytical expression from the 

anisotropic continuum model. We can verify that the current distribution in both models 

as well as the calculated eddy current coupling loss are very similar. A block model for a 

particular discrete system (seven-strand MgB2 cable) is also developed by modeling it as 

consisting of several layers, each with different resistivity tensors. Transverse current in 

the seven-strand model is restricted to the centeral part of the sample and is greatly 

reduced, compared to that of cylindrical conductor, leading to very low eddy current 

coupling loss. 

 Magnetic shielding caused by the Fe layer reduces the hysteresis loss of MgB2 

strands, an effect which almost totally suppresses the hysteresis loss below 0.2 T. The 

reduction of hysteresis loss is calculated using a two-dimensional numerical method. The 

real loss reduction is calculated assuming full magnetic field penetration and a field 

dependence of critical current as in Kim’s model. The apparent loss reduction as shown 

from the M-H loops measured with VSM is always greater than the real loss reduction, 

since the signal from the superconducting filaments are also shielded by Fe layer, before 

it reaches the pick-up coil of VSM. 

 An alternative method for measuring the eddy current coupling loss of MgB2 

seven strand cables was developed using the measured contact resistance between the 

strands. From the contact resistance averaged over the sample length measured by a four-

point method, the eddy current coupling loss of MgB2 seven strand cable is easily 
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calculated. Since there are seven strands in a cable, the contact resistance between the 

strands is extracted using 
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Without direct measurements of AC loss by either VSM or pick-up coil method, the eddy 

current coupling loss can be predicted with this simple analytic method. If we consider 

primarily the current component causing the eddy current loss in the cables, the results of 

the eddy current loss calculated from the numerical seven-strand model and the analytical 

method using contact resistance are very close (12.5– 27 % difference). The experimental 

verification of these models for eddy current coupling loss still needs to be performed in 

future work  

 AC loss of superconducting composites can be calculated either by a continuum 

model or a discrete model. A comparison was made between these models by relating the 
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It is very close the loss expression from a continuum model (6.67 % difference). 
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The insulating layer at the interface of strands is shown to control the contact 

resistance between the strands in the cables. This contact resistance eventually controls 

the eddy current coupling loss of MgB2 cables. The contact resistance of a sample with 

surface treatment is about two orders higher than that of a sample without any surface 

treatment. The differences at the interface of these samples are analyzed using SEM and 

EDS. Considering the equilibrium carbon composition in Cu and Ni from phase 

diagrams, carbon contamination is too high to compare the MgB2 cables with and without 

surface treatment. However, the interface between strands of MgB2 cable without surface 

treatment is clearer than that of MgB2 cable with surface treatment. It is thought to be 

residue from SAE30 oil after doing 750 °C heat treatment. Oxygen composition at the 

interface of the MgB2 cable is slightly higher in case of the cable with surface treatment. 

Intermetallic compounds can be made from reactions between Mg with Cu or Ni. 

Fe layer between filaments and matrix can prevent these reactions, but Fe itself can 

diffuse to matrix materials. These intermetallic compounds and the diffusion of Fe can 

increase the transverse effective resistivity of the cable, leading to low eddy current 

coupling loss, but these reaction can harm the superconducting properties of filaments 

and should be prevented. More extensive study should be done to reduce the eddy current 

loss in the cables without harming the superconducting properties of the filaments and the 

stability of the cables.  

To directly measure the eddy current loss of the samples at high frequencies, a 

pick up coil system was built. The loss of the MgB2 cables was measured at 4.2 K with 

50 Hz – 200 Hz under an applied magnetic field of 0.04 T. The AC loss of these MgB2 

cables was very low in these conditions, due to magnetic shielding and the high contact 
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resistance between the strands. Such low AC losses make these cables potentially useful 

applications such as power transfer lines where the magnetic field is low but the 

frequencies are high. 
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APPENDIX A 

 

 
COMPARISONS OF DISCRETE AND CONTINUOUS ANALYTIC MODELS FOR 

RECTANGULAR GEOMETRY COMPOSITES 
 
 

The eddy current loss in rectangular superconducting composite in the network 

model, especially for the Rutherford cables, is expressed as below[1, 2] 

                                            �
�
�

�
�
�
�

�
�
�

�
�
�

�=
c

s
mp

s

e

R

N

dt

dB
BL

t

w

V

Q

203

2 2

                            (J/m3)                        (1)  

Here, the eddy current loss from the side-by-side interstrand resistance is ignored. w 

is cable width, t is cable thickness, Lp is twist pitch, Bm is magnetic field amplitude, Ns is 

the number of strand in cable, and R⊥ is the interstrand resistance. 

On the other hand, the eddy current loss for such a superconducting composite 

described in terms of an anisotropic continuum model, typically used for HTSC, is 

expressed as  

                   2
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      (J/m3)                        (2) 

Here, ρ⊥ is effective resistivity. The shape factor, (w/t)2 is added to the equation 

kernel following Carr[3]. We have to convert the interstrand resistance, Rc, to an effective 

resistivity, ρ⊥ in order to compare (1) and (2). 
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Finally, if we input this to (1), we get 
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which is 6.67% different from (2). 
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Fig. A.1. Crossover area in a Rutherford cable. 
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APPENDIX B 

 

 

 

 

EDDY CURRENT COUPLING LOSS IN SEVEN-STRAND CABLES 

 

 

The eddy current path of a seven strand cable is shown in Fig. B.1. Consider the 

contact resistance of this postulated eddy current path with cross section Ae and the path 

length tcom. The measured contact resistance by four-point probe method should be 

normalized by the number of current path as follows. 

Rc: contact resistance at eddy current path = (measured Rc ) × (Ls /2r) 

The relationship between (measured Rn) (n = 1,2,3,4) and (measured Rc) is in Appendix 

D. 

Ls: sample length ≈ Lst (strand length of the sample) 

(Ls /2r): Number of current path in the sample 

Ae: cross section of eddy current path, π r2 

tcom = 6r (from top filament to bottom filament, or vice versa) 

r : radius of one strand 

When magnetic field changes with certain frequency, the electromotive force is, 
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DABV �� =Φ= . The diamond area in Fig. B.1. is AD = (3/2)Lpr. 

t

D

t

D

t
e R

AB

R

AB

R

V
I

��
=== , It is assumed no resistance along the superconducting filaments. 

There are two contact resistances, Rc for effective transverse resistance, R⊥, and two 

transverse resistance for total resistance along the eddy current path. 

Rt: total resistance along the eddy current path is given by Rt =2R⊥= 4Rc 
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Ne = Lp/2r, Number of eddy current paths in the volume, not the number of strands. 

The loss from this derivation 
�
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 is less than the loss for twisted round stand by 

Carr[3] , which is 
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P �
� . But, considering the current path in 

seven strand cables is greatly reduced comparing to that of the multifilamentary LTSC, 

the smaller loss is reasonable. 
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APPENDIX C 

 

 

 

 

EFFECTIVE RESISTIVITY OF A SUPERCONDUCTING COMPOSITE 

 

 

By using effective medium theory, we can derive (1-9-a) and (1-9-b). We assume 

filaments are cylindrical shape and do not consider potential variation according to 

composite axis. Then, we can make ‘unit cell’  which is composed of superconducting 

filament and matrix around it as Fig. C. 1 

 

 

 

 

 

 

 

 

 

Fig. C.1. Unit cell of the filament with radius r f, conductivity σf, and matrix 
with radius rm, and conductivity σm. We want to know the effective 
conductivity of the composite, σe. 

Φ = G x= G r cosθ,   G = Ex

rf

rm σe

x

σm
σf

Φ = G x= G r cosθ,   G = Ex

rf

rm σe

x

σm
σf
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The volume fraction of the superconducting filament within the unit cell shown above 

is λ = ( r f  / rm)2, The potential is given by Φ = Gx = Grcosθ  where G is gradient of Φ, 

i.e., the electric field Ex.  If we assume there is no source of charge inside filaments, then 

we can use the Laplace equation, ∇2 Φ = 0. The general solution of this differential 

equation in a cylindrical geometry is        

                                                    θθ cos)(),(
r

B
Arr +=Φ  

inside of the filament,               θcos)(
r

B
rA f

ff +=Φ ,                                                (1) 

within the matrix,                       θcos)(
r

B
rA m

mm +=Φ ,                                                (2) 

and for an effective medium averaged in a length scale much larger than the filamentary 

scale,                                           θcos)(
r

B
rA e

ee +=Φ .                                                  (3) 

We now apply a boundary condition. We know that at r f =0, Φ must have finite value, 

therefore from (1) Bf =0. 

Then,                                               θcosrAff =Φ                                                       (1-1) 

                                                         Φe = G rcosθ,                                                        (3-1) 

therefore from (3), Be = 0 and Ae = G . 

Also, at r f                                        Φf (r f , θ ) = Φm(r f , θ ) ,                                            (4) 

And, at rm                                       Φm(rm , θ ) = Φe(rm , θ ) ,                                          (5) 
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at r f                                              
rr

m
m

f
f ∂

Φ∂−=
∂
Φ∂

− σσ  ,                                              (6) 

at rm                                               
rr

e
e

m
m ∂

Φ∂−=
∂
Φ∂− σσ  .                                             (7) 

We have 4 unknowns, Af, Am, Bm and σe and 4 equations (4),(5),(6),(7). After solving 

simultaneously using λ, we can get σe. 

                                               
)(

)(

fmmf

fmmf
me σσλσσ

σσλσσ
σσ

−++
−−+

=  

if interface resistivity is low σf → ∞,      then 
λ
λσσ

−
+=

1
1

me  and 

if interface resistivity is high σf → 0,     then 
λ
λσσ

+
−=

1
1

me  . 
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APPENDIX D 

 

 

 

 

CONTACT RESISTANCE OF A SEVEN-STRAND CABLE 

 

 

 

 

 

 

 

 

 

 

 

 

Considering the symmetry of seven strand MgB2 cable, there are four kinds of 

contact resistances R1(1 and 2), R2 (1 and 3), R3 (1 and 4) and R4(1 and 5). There are many 

possible connections, but the maximum connection between two strands is assumed 6, 

considering the number of strands. Also, the contact resistance is assumed same as Rc. 

For contact resistance R1, R2, R3 and R4 the possible current paths are in Table D.1  

Then, for R1, 

ccccccc RRRRRRRR 60

273
.....

6

5

5

4

4

3

3

2

2

111

1

=++++++=  Therefore, cRR
273

60
1 =

1 

2 

3 4 

5 

6 

7 

1 

2 

3 4 

7 

6 

5 

Fig. D.1. Contacts between individual strands in an MgB2 
cable 
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For R2, 

cccccc RRRRRRR 60

283
.....

6

2

5

4

4

5

3

4

2

21

2

=+++++=  Therefore, cRR
283

60
2 =  

For R3, 

cccccc RRRRRRR 60
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.....

6

2
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3

=+++++=  Therefore, cRR
258

60
3 =  

For R4, 

ccccccc RRRRRRRR 60
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=++++++=  Therefore, cRR
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Table D.1. Possible current paths for R1, R2, R3 and R4. 

6Rc1 6 7 5 2 3 46Rc1 2 5 6 7 4 3

6Rc1 2 3 5 6 7 46Rc1 6 7 4 5 2 3 6Rc1 5 6 7 4 3 2

5Rc1 2 3 5 7 45Rc1 6 7 5 2 36Rc1 6 7 5 4 3 2

5Rc1 6 7 5 3 45Rc1 2 5 7 4 36Rc1 6 5 7 4 3 2

5Rc1 2 5 6 7 45Rc1 6 5 7 4 36Rc1 6 7 4 5 3 2

5Rc1 6 5 2 3 45Rc1 5 6 7 4 36Rc1 6 7 4 3 5 2

6Rc1 2 3 4 7 6 54Rc1 6 5 3 44Rc1 6 7 4 35Rc1 5 7 4 3 2

6Rc1 6 7 4 3 2 54Rc1 6 5 7 44Rc1 6 5 2 35Rc1 6 7 5 3 2

5Rc1 2 3 4 7 54Rc1 6 7 5 44Rc1 6 5 4 35Rc1 6 7 4 3 2

5Rc1 6 7 4 3 54Rc1 2 5 7 44Rc1 5 7 4 35Rc1 6 5 4 3 2

4Rc1 2 3 4 5 4Rc1 2 3 5 44Rc1 6 7 5 3 4Rc1 6 7 5 2 

4Rc1 6 7 4 54Rc1 2 5 3 43Rc1 5 4 34Rc1 6 5 3 2

3Rc1 2 3 53Rc1 6 5 43Rc1 5 2 34Rc1 5 4 3 2

3Rc1 6 7 5 3Rc1 2 5 43Rc1 2 5 33Rc1 6 5 2

2Rc1 6 53Rc1 6 7 43Rc1 6 5 33Rc1 5 3 2

2Rc1 2 53Rc1 2 3 42Rc1 5 32Rc1 5 2

Rc1 52Rc1 5 42Rc1 2 3Rc1 2

ResistancePossible 
paths for R4

ResistancePossible 
paths for R3

ResistancePossible 
paths for R2

ResistancePossible 
paths for R1

6Rc1 6 7 5 2 3 46Rc1 2 5 6 7 4 3

6Rc1 2 3 5 6 7 46Rc1 6 7 4 5 2 3 6Rc1 5 6 7 4 3 2

5Rc1 2 3 5 7 45Rc1 6 7 5 2 36Rc1 6 7 5 4 3 2

5Rc1 6 7 5 3 45Rc1 2 5 7 4 36Rc1 6 5 7 4 3 2

5Rc1 2 5 6 7 45Rc1 6 5 7 4 36Rc1 6 7 4 5 3 2

5Rc1 6 5 2 3 45Rc1 5 6 7 4 36Rc1 6 7 4 3 5 2

6Rc1 2 3 4 7 6 54Rc1 6 5 3 44Rc1 6 7 4 35Rc1 5 7 4 3 2

6Rc1 6 7 4 3 2 54Rc1 6 5 7 44Rc1 6 5 2 35Rc1 6 7 5 3 2

5Rc1 2 3 4 7 54Rc1 6 7 5 44Rc1 6 5 4 35Rc1 6 7 4 3 2

5Rc1 6 7 4 3 54Rc1 2 5 7 44Rc1 5 7 4 35Rc1 6 5 4 3 2

4Rc1 2 3 4 5 4Rc1 2 3 5 44Rc1 6 7 5 3 4Rc1 6 7 5 2 

4Rc1 6 7 4 54Rc1 2 5 3 43Rc1 5 4 34Rc1 6 5 3 2

3Rc1 2 3 53Rc1 6 5 43Rc1 5 2 34Rc1 5 4 3 2

3Rc1 6 7 5 3Rc1 2 5 43Rc1 2 5 33Rc1 6 5 2

2Rc1 6 53Rc1 6 7 43Rc1 6 5 33Rc1 5 3 2

2Rc1 2 53Rc1 2 3 42Rc1 5 32Rc1 5 2

Rc1 52Rc1 5 42Rc1 2 3Rc1 2

ResistancePossible 
paths for R4

ResistancePossible 
paths for R3

ResistancePossible 
paths for R2

ResistancePossible 
paths for R1
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