Skip to main content

MSE Colloquium: Michele Manuel, Integration of Thermodynamic and Kinetic Databases in an Engineering Framework: A Magnesium Alloy Design Case Study

Professor, Department of Materials Science and Engineering, University of Florida

All dates for this event occur in the past.

264 MacQuigg Labs
105 W. Woodruff Ave
Columbus, OH 43210
United States

Abstract

Modern materials contain extraordinary levels of complexity with components spanning a hierarchy of length scales. Designing materials that contain complex microstructures and demonstrate unique behaviors would be difficult solely using a reductionist approach to materials development.   Although this approach has led to many technological breakthroughs, the rapid evolution of technology and the need for a shortened materials development cycle are driving materials scientists toward a more predictive approach based on design. A powerful utility in this endeavor is the use of computational thermodynamic and kinetic tools.  The integration of these tools into a systems-based materials design methodology that couples experimental research with theory and mechanistic modeling has been established to accelerate materials development.  Microstructural properties can be expressed as thermodynamic parameters that are predictable by computational thermodynamic tools, while kinetic simulations can assist in elucidating processing-structure relationships to quantify microstructural evolution.  Experimental prototypes are then created to experimentally analyze and validate the design models that feed back into the working design for optimizing materials performance while minimizing design iterations. A roadmap for materials design and its relationship to computational thermodynamics and kinetics will be discussed in its application to structural materials where active mechanisms are complex and interacting.   This talk focuses on the high temperature magnesium alloy development as a model system. It will be shown that strategically pairing experimental and computational methodologies will minimize the need for large-scale experiments while simultaneously promoting the rapid development of materials.

Bio

 

mse_manuel_michele_small.jpg
Dr. Michele Manuel

Michele Manuel is an Associate Professor in the Department of Materials Science and Engineering at the University of Florida.  She received her Ph.D in Materials Science and Engineering at Northwestern University in 2007 and her B.S. in Materials Science and Engineering at the University of Florida.  She is the recipient of the NSF CAREER, NASA Early Career Faculty, ASM Bradley Stoughton Award for Young Teachers, AVS Recognition for Excellence in Leadership, TMS Early Career Faculty, TMS Young Leaders Professional Development, and TMS/JIM International Scholar Awards. 

Her research lies in the basic understanding of the relationship between processing, structure, properties and performance. She uses a systems-based materials design approach that couples experimental research with theory and mechanistic modeling for the accelerated development of materials. Her current research is focused on the use of systems-level design methods to advance the development of new materials through microstructure optimization.  Of specific interest are lightweight alloys, self-healing metals, shape memory alloys, materials in extreme environments – specifically under high magnetic fields or under irradiation, and computational thermodynamics and kinetics.

See also http://www.materialsdesigngroup.com/